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ABSTRACT
Sentiment classication typically relies on a large amount of la-
beled data. In practice, the availability of labels is highly imbalanced
among dierent languages, e.g., more English texts are labeled
than texts in any other languages, which creates a considerable
inequality in the quality of related information services received by
users speaking dierent languages. To tackle this problem, cross-
lingual sentiment classication approaches aim to transfer knowl-
edge learned from one language that has abundant labeled examples
(i.e., the source language, usually English) to another language with
fewer labels (i.e., the target language). The source and the target
languages are usually bridged through o-the-shelf machine trans-
lation tools. Through such a channel, cross-language sentiment
patterns can be successfully learned from English and transferred
into the target languages. This approach, however, often fails to
capture sentiment knowledge specic to the target language, and
thus compromises the accuracy of the downstream classication
task. In this paper, we employ emojis, which are widely available in
many languages, as a new channel to learn both the cross-language
and the language-specic sentiment patterns. We propose a novel
representation learning method that uses emoji prediction as an
instrument to learn respective sentiment-aware representations
for each language. The learned representations are then integrated
to facilitate cross-lingual sentiment classication. The proposed
method demonstrates state-of-the-art performance on benchmark
datasets, which is sustained even when sentiment labels are scarce.

CCS CONCEPTS
• Information systems→ Sentiment analysis.
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1 INTRODUCTION
Sentiment analysis has become a critical topic in various research
communities, including natural language processing (NLP) [22, 26],
Web mining [23, 38], information retrieval [14, 57], ubiquitous com-
puting [30, 53], and human-computer interaction [24, 59]. Due to its
eectiveness in understanding user attitudes, emotions, and even
latent psychological statuses from text, sentiment analysis has been
widely applied to all kinds of Web content such as blogs, Tweets,
user reviews, and forum discussions, and it has been a critical
component in many applications such as customer review track-
ing [27], sales prediction [39], product ranking [41], stock market
prediction [54], opinion polling [45], recommender systems [55],
personalized content delivery [29], and online advertising [52].

Similar to many other text mining tasks, existing work on sen-
timent analysis mainly deals with English texts [22, 26, 38, 57].
Although some eorts have also been made with other languages
such as Japanese [51], sentiment analysis for non-English languages
is far behind. This creates a considerable inequality in the quality
of the aforementioned Web services received by non-English users,
especially considering that 74.6% of Internet users are non-English
speakers as of 2018 [9]. The cause of this inequality is quite simple:
eective sentiment analysis tools are often built upon supervised
learning techniques, and there are way more labeled examples in
English than in other languages.

A straightforward solution is to transfer the knowledge learned
from a label-rich language (i.e., the source language, usually English)
to another language that has fewer labels (i.e., the target language),
an approach known as cross-lingual sentiment classication [19].
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In practice, the biggest challenge of cross-lingual sentiment clas-
sication is how to ll the linguistic gap between English and the
target language. Many choose to bridge the gap through standard
NLP techniques, and in particular, most recent studies have been
using o-the-shelf machine translation tools to generate pseudo
parallel corpora and then learn bilingual representations for the
downstream sentiment classication task [50, 58, 62]. More specif-
ically, many of these methods enforce the aligned bilingual texts
to share a unied embedding space, and sentiment analysis of the
target language is conducted in that space.

Although this approach looks sensible and easily executable,
the performance of these machine translation-based methods of-
ten falls short. Indeed, a major obstacle of cross-lingual sentiment
analysis is the so-called language discrepancy problem [19], which
machine translation does not tackle well. More specically, sen-
timent expressions often dier a lot across languages. Machine
translation is able to retain the general expressions of sentiments
that are shared across languages (e.g., “angry” or “怒っている”
for negative sentiment), but it usually loses or even alters the sen-
timents in language-specic expressions [44]. As an example, in
Japanese, the common expression “湯水のように使う” indicates
a negative sentiment, describing the excessive usage or waste of a
resource. However, its translation in English, “use it like hot water,”
not only loses the negative sentiment but also sounds odd.

The reason behind this pitfall is easy to explain: machine trans-
lation tools are usually trained on parallel corpora that are built in
the rst place to capture patterns shared across languages instead
of patterns specic to individual languages. In other words, the
problem is due to the failure to retain language-specic sentiment
knowledge when unilaterally pursuing generalization across lan-
guages. A new bridge needs to be built beyond machine translation,
which not only transfers “general sentiment knowedge” from the
source language but also captures “private sentiment knowledge”
of the target language. That bridge can be built with emojis.

In this paper, we tackle the problem of cross-lingual sentiment
analysis by employing emojis as an instrument. Emojis are consid-
ered an emerging ubiquitous language used worldwide [16, 40]; in
our approach they serve both as a proxy of sentiment labels and
as a bridge between languages. Their functionality of expressing
emotions [21, 34] motivates us to employ emojis as complemen-
tary labels for sentiments, while their ubiquity [16, 40] makes it
feasible to learn emoji-sentiment representations for almost ev-
ery active language. Coupled with machine translation, the cross-
language patterns of emoji usage can complement the pseudo paral-
lel corpora and narrow the language gap, and the language-specic
patterns of emoji usage help address the language discrepancy
problem.

We propose ELSA, a novel framework of Emoji-powered repre-
sentation learning for cross-Lingual Sentiment Analysis. Through
ELSA, language-specic representations are rst derived based on
modeling how emojis are used alongside words in each language.
These per-language representations are then integrated and rened
to predict the rich sentiment labels in the source language, through
the help of machine translation. Dierent from the mandatorily
aligned bilingual representations in existing studies, the joint rep-
resentation learned through ELSA catches not only the general
sentiment patterns across languages, but also the language-specic

patterns. In this way, the new representation and the downstream
tasks are no longer dominated by the source language.

We evaluate the performance of ELSA on a benchmark Amazon
review dataset that has been used in various cross-lingual sentiment
classication studies [50, 58, 62]. The benchmark dataset covers
nine tasks combined from three target languages (i.e., Japanese,
French, and German) and three domains (i.e., book, DVD, and mu-
sic). Results indicate that ELSA outperforms existing approaches on
all of these tasks in terms of classication accuracy. Experiments
also show that the emoji-powered model works well even when
the volume of unlabeled and labeled data are rather limited. To
evaluate the generalizability of ELSA, we also apply the method to
Tweets, which again demonstrates state-of-the-art performance. In
summary, the major contributions of this paper are as follows:
• To the best of our knowledge, this is the rst study that leverages
emojis as an instrument in cross-lingual sentiment classication.
We demonstrate that emojis provide not only surrogate sentiment
labels but also an eective way to address language discrepancy.
• We propose a novel representation learning method to incorpo-
rating language-specic knowledge into cross-lingual sentiment
classication, which uses an attention-based Long Short-Term
Memory (LSTM) model to capture sentiments from emoji usage.
• We demonstrate the eectiveness and eciency of ELSA for
cross-lingual sentiment classication using multiple large-scale
datasets. ELSA signicantly improves the state-of-the-art results
on the benchmark datasets.1
• The use of emojis as a bridge provides actionable insights into
other Web mining applications that suer from similar problem
of inequality among languages.
The rest of this paper is organized as follows. Section 2 presents

the related work. Section 3 formulates the problem and presents the
proposed approach (ELSA) to cross-lingual representation learn-
ing. Section 4 evaluates ELSA and analyzes the eectiveness of
emojis in the learning process. Section 5 discusses the scalability
and generalizability of ELSA, followed by concluding remarks in
Section 6.

2 RELATEDWORK
We start with a summary of existing literature related to our study.
Emojis. Emojis, also known as ideograms or smileys, can be used
as compact expressions of objects, topics, and emotions. Being en-
coded in Unicode, they have no language barriers and are diused
on the Internet rapidly [40]. The prevalence of emojis has attracted
researchers from various research communities such as NLP, ubiq-
uitous computing, human-computer interaction, multimedia, and
Web mining [12, 16, 20, 21, 34, 40, 43]. Many eorts have been
devoted to studying their usage across platforms [43], across gen-
ders [20], across languages [16], and across cultures [40]. The vari-
ous non-verbal functions of emojis play an important role in their
wide adoption. Emojis are used to replace content words, express
situational and additional emotions, adjust tones, express intimacy,
etc. [21, 34]. In particular, expressing sentiment is demonstrated to
be the most popular intention for using emojis [34], so that emojis

1The benchmark datasets, scripts, and pre-trained models are available at https://
github.com/sInceraSs/ELSA.
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Figure 1: The workow of ELSA.

can be used as eective proxies for sentiment polarities [26]. Con-
sidering the ubiquitous usage of emojis across languages and their
functionality of expressing sentiments, we make the rst eort to
use emojis as an instrument to improve cross-lingual sentiment
analysis.

Textual Sentiment Analysis. Sentiment analysis is a classical
NLP task aiming to study the emotions, opinions, evaluations, ap-
praisals, and attitudes of people from text data [37]. Many widely
used tools, such as SentiStrength [56] and LIWC [49], simply ag-
gregate the polarity of individual words to determine the overall
sentiment score of a text. Better performance of sentiment classi-
cation is often obtained through supervised machine learning [46].
Recently, with the emergence of deep learning techniques, many re-
searchers have attempted to use advanced neural network models
for sentiment analysis [60]. Supervised machine learning meth-
ods, including deep learning models, usually require a large vol-
ume of labeled data for training. In reality, however, high-quality
sentiment labels are often scarce due to the labor-consuming and
error-prone human annotation process [26]. To address this limi-
tation, researchers have used sentimental hashtags and emoticons
as weak sentiment labels [22, 23]. These weak labels are usually
language/community-specic. In addition, guring out the senti-
ment polarities of certain hashtags or emoticons can be hard. In
recent years, emoticons have been gradually replaced by increas-
ingly popular emojis [48], and emojis have started to be explored as
proxies of sentiment labels [26]. We follow the same intuition and
utilize emojis as surrogate labels to learn per-language represen-
tations. Instead of attempting to directly map emojis to sentiment
polarities, however, we integrate these language-specic represen-
tations and feed them through downstream tasks to predict real,
high quality sentiment labels (in the source language).

Cross-Lingual Text Classication. There is a signicant im-
balance in the availability of labeled corpora among dierent lan-
guages: more in English, and much fewer in other languages. Cross-
lingual learning is a common approach to tackling this problem
in various text mining tasks such as Web page classication [36],
topic categorization [61], and sentiment analysis [50, 58, 62]. Many
researchers divide cross-lingual learning process into two stages:

rst encoding texts in the source and the target languages into con-
tinuous representations, and then utilizing these representations
for the nal classication task in the target language [50, 58, 62].
To bridge the linguistic gap between the source and the target
languages, most studies introduce a translation oracle to project
dierent languages’ representations into a unied space at dierent
(e.g., word or document) levels [18, 50, 58, 62]. The performance of
these methods thus heavily depends on the quality of the machine
translation tools and the pseudo parallel corpora they generate.
Unfortunately, dierent from topical words, emotional language
patterns like sentiment (or sarcasm, humor), which present strong
language-specic characteristics, cannot be easily transferred in
this way. We utilize the easily accessible emoji-texts to incorporate
both cross-language and language-specic knowledge into the rep-
resentations of the source and the target languages. The implicit
sentiment knowledge encoded in the usage of diverse emojis solves
both the label imbalance and the language discrepancy problems.

3 THE ELSA APPROACH
To better illustrate theworkow of ELSA, we rst give a formulation
of our problem. Cross-lingual sentiment classication aims to use
the labeled data in a source language (i.e., English) to learn a model
that can classify the sentiment of test data in a target language. In
our setting, besides labeled English documents (LS ), we also have
large-scale unlabeled data in English (US ) and in the target language
(UT ). Furthermore, there exist unlabeled data containing emojis,
both in English (ES ) and in the target language (ET ). In practice,
these unlabeled, emoji-rich data can be easily obtained from online
social media such as Twitter. Our task is to build a model that can
classify the sentiment polarity of document in the target language
solely based on the labeled data in the source language (i.e., LS )
and the dierent kinds of unlabeled data (i.e., US , UT , ES and ET ).
Finally, we use a held-out set of labeled documents in the target
language (LT ), which can be small, to evaluate the model.

The workow of ELSA is illustrated in Figure 1, with the fol-
lowing steps. In step 1 and step 2, we build sentence representation
models for both the source and the target languages. Specically, for
each language, we employ a large number of Tweets to learn word
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embeddings (through Word2Vec [42]) in an unsupervised fashion.
From these word embeddings, we learn higher-level sentence rep-
resentation through predicting the emojis used in a sentence. This
can be viewed as a distantly supervised learning process, where
emojis serve as surrogate sentiment labels. In step 3, we translate
each labeled English document into the target language, sentence
by sentence, through Google Translate. Both the English sentences
and their translations are fed into the representation models learned
in steps 1 and 2 to obtain their per-language representations (step
4 and step 5). Then in step 6 and step 7 we aggregate these sen-
tence representations back to form two compact representations
for each training document, one in English and the other in the
target language. In step 8, we use the two representations as features
to predict the real sentiment label of each document and obtain the
nal sentiment classier. In the test phase, for a new document in
the target language, we translate it into English and then follow
the previous steps to obtain its representation (step 9), based on
which we predict the sentiment label using the classier (step 10).

3.1 Representation Learning
Representations of documents need to be learned before we train
the sentiment classier. Intuitively, one could simply use o-the-
shelf word embedding techniques to create word representations
and then average the word vectors to obtain document embed-
dings. Such embeddings, however, capture neither per-language
nor cross-language sentiment patterns. Since emojis are widely
used to express sentiments across languages, we learn sentiment-
aware representations of documents using emoji prediction as an
instrument. Specically, in a distantly supervised way, we use emo-
jis as surrogate sentiment labels and learn sentence embeddings by
predicting which emojis are used in a sentence. This representation
learning process is conducted separately in the source and the target
languages to capture language-specic sentiment expressions.

The architecture of the representation learning model is illus-
trated in Figure 2. First, we pre-train low-level word embeddings
using tens of millions of unlabeled Tweets (i.e., the word embedding
layer). Then, we represent every single word as a unique vector
and use stacked bi-directional LSTM layers and one attention layer
to encode these word vectors into sentence representations. The
attention layer takes the outputs of both the embedding layer and
the two LSTM layers as input, through the skip-connection algo-
rithm [31], which enables unimpeded information ow in the whole
training process. Finally, the model parameters are learned by min-
imizing the output error of the softmax layer. The details of the
architecture are elaborated below.
Word Embedding Layer. The word embeddings are pre-trained
with the skip-gram algorithm [42] based on eitherUS orUT , which
encode every single word into a continuous vector space.Words that
commonly occur in a similar context are embedded closely in the
vector space, which captures word semantic information. We leave
the details of this standard Word2Vec process to the readers [42].
Bi-Directional LSTMLayer. As a special type of recurrent neural
network (RNN), LSTM [33] is particularly suitable for modeling
the sequential property of text data. At each step (e.g., word token),
LSTM combines the current input and knowledge from the previous
steps to update the states of the hidden layer. To tackle the gradient

Word Embedding Layer

W1 W2 W3 WL…Words in
a Sentence

d1 d2 d3 dL…

𝒉𝟏 …
𝒉𝟏 …
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Bi-Directional
LSTM Layer

𝒉𝟏 …
𝒉𝟏 …

𝒉𝟐 𝒉𝟑 𝒉𝑳

𝒉𝟐 𝒉𝟑 𝒉𝑳

Attention Layer

Softmax Layer

Bi-Directional
LSTM Layer

Concatenation

Figure 2: Network architecture for representation learning
through emoji prediction.

vanishing problem [32] of traditional RNNs, LSTM incorporates a
gating mechanism to determine when and how the states of hidden
layers can be updated. Each LSTM unit contains a memory cell
and three gates (i.e., an input gate, a forget gate, and an output
gate) [47]. The input and output gates control the input activations
into the memory cell and the output ow of cell activations into
the rest of the network, respectively. The memory cells in LSTM
store the sequential states of the network, and each memory cell
has a self-loop whose weight is controlled by the forget gate.

Let us denote each sentence in ES or ET as (x , e), where x =
[d1,d2, ...,dL] as a sequence of word vectors representing the plain
text (by removing emojis) and e as one emoji contained in the text.
At step t , LSTM computes unit states of the network as follows:

i (t ) = σ (Uidt +Wih
(t−1) + bi ),

f (t ) = σ (Uf dt +Wf h
(t−1) + bf ),

o(t ) = σ (Uodt +Woh
(t−1) + bo ),

c (t ) = ft � c
(t−1) + i (t ) � tanh(Ucdt +Wch

(t−1) + bc ),

h(t ) = o(t ) � tanh(c (t ) ),

where i (t ) , f (t ) , o(t ) , c (t ) , and h(t ) denote the state of the input
gate, forget gate, output gate, memory cell, and hidden layer at
step t .W , U , b respectively denote the recurrent weights, input
weights, and biases. � is the element-wise product. We can extract
the latent vector for each step t from LSTM. In order to capture the
information from the context both preceding and following a word,
we use the bi-directional LSTM. We concatenate the latent vectors
from both directions to construct a bi-directional encoded vector
hi for every single word vector di , which is:

→

hi =
−→

LSTM (di ), i ∈ [1,L],
←

hi =
←−

LSTM (di ), i ∈ [L, 1],

hi = [
→

hi ,
←

hi ].

Attention Layer. We employ a skip-connection that concatenates
the outputs of the embedding layer and the two bi-directional LSTM
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layers as the input of the attention layer. The i-th word of the input
sentence can be represented as ui :

ui = [di ,hi1,hi2],
wheredi ,hi1, andhi2 denote the encoded vectors of words extracted
in the word embedding layer and the rst and second bi-directional
LSTMs, respectively. Since not all words contribute equally to pre-
dicting emojis or expressing sentiments, we employ the attention
mechanism [13] to determine the importance of every single word.
The attention score of the i-th word is calculated by

ai =
exp (Waui )∑L
j=1 exp (Wauj )

,

whereWa is the weight matrix used by the attention layer. Then
each sentence can be represented as the weighted sum of all words
in it, using the attention scores as weights. That is,

v =
L∑
i=1

aiui .

Softmax Layer. The sentence representation is then transferred
into the softmax layer, which returns a probability vector Y . Each
element of this vector indicates the probability that this sentence
contains a specic emoji. The i-th element of the probability vector
is calculated as:

yi =
exp (vTwi + bi )∑K
j=1exp (v

Tw j + bj )
,

where wi and bi dene the weight and bias of the i-th element.
Finally, we learn the model parameters by minimizing the cross
entropy between the output probability vectors and the one-hot
vectors of the emoji contained in each sentence. After learning
the parameters, we can extract the output of the attention layer
to represent each input sentence. Through this emoji-prediction
process, words with distinctive sentiments can be identied, and the
plain text surrounding the same emojis will be represented similarly.
Given the fact that the sentiment labels are limited, once the emoji-
powered sentence representations are trained, they are locked in
the downstream sentiment prediction task to avoid over-tting.

3.2 Training the Sentiment Classier
Based on the pre-trained, per-language sentence representations,
we then learn document representations and conduct cross-lingual
sentiment classication.

First, for each English documentDs ∈ LS , we use the pre-trained
English representation model to embed every single sentence in
it. Second, we aggregate these sentence representations to derive
a compact document representation. Because dierent parts of a
document contribute dierently to the overall sentiment, we once
again adopt the attention mechanism here. Supposing the sentence
vectors as vi , we calculate the document vector rs as:

rs =
∑N

i=1
βivi , where

βi =
exp (Wbvi )∑N
j=1 exp (Wbvj )

,

Table 1: The sizes of the Tweets and emoji-Tweets.

Language English Japanese French German
Raw Tweets 39.4M 19.5M 29.2M 12.4M
Emoji-Tweets 6.6M 2.9M 4.4M 2.7M

whereWb is the weight matrix of the attention layer and βi is the
attention score of the i-th sentence in the document. Next, we use
Google Translate to translate Ds into the target language (Dt ). We
then leverage the pre-trained target-language representation model
to form representations for each translated document following
the same process above. Supposing the text representations of Ds
and Dt are rs and rt respectively, we concatenate them into a joint
representation rc = [rs , rt ], which contains sentiment knowledge
from both English and the target language, ensuring that our model
is not dominated by the labeled English documents. Finally, we in-
put rc into an additional softmax layer to predict the real sentiment
label of Ds .

3.3 Sentiment Classication for Target
Language

When we receive an unlabeled document in LT , we rst translate it
into English. Based on the representation models trained above, the
original document and its English translation can be represented as
rt and rs . We represent this document as [rs , rt ] and input it into
the classier, which outputs a predicted sentiment polarity.

4 EVALUATION
In this section, we evaluate the eectiveness and eciency of ELSA
using standard benchmark datasets for cross-lingual sentiment
classication as well as a large-scale corpus of Tweets.

4.1 The Dataset
The labeled data (LS for training and LT for testing) used in our
work are from the Amazon review dataset [3] created by Pretten-
hofer and Stein [50]. This dataset is representative and used in a
variety of cross-lingual sentiment classication work [50, 58, 62]. It
covers four languages (i.e., English, Japanese, French, and German)
and three domains (i.e., book, DVD, and music). For each combina-
tion of language and domain, the dataset contains 1,000 positive
reviews and 1,000 negative reviews. We select English as the source
language and the other three as the target languages. Therefore,
we can evaluate our approach on nine tasks in total (i.e., combina-
tions of the three domains and three target languages). For each
task, we use the 2,000 labeled English reviews in the corresponding
domain for training and the 2,000 labeled reviews in each target
language for evaluation. The translations of the test reviews are
already provided in this dataset, so we only need to translate the
English reviews into target languages.

To achieve unlabeled data (US and UT ), we collect a sample of
English, Japanese, French, and German Tweets between September
2016 and March 2018. All collected Tweets are used to train the
word embeddings. As emojis are widely used on Twitter [48], we
are able to extract emoji-labeled Tweets, which are used to learn
emoji-powered sentence representations. For each language, we
extract Tweets containing the top 64 emojis used in this language.
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As many Tweets contain multiple emojis, for each Tweet, we create
separate examples for each unique emoji used in it to make the
emoji prediction a single-label classication task instead of more
complicated multi-label classication.

We then conduct the following preprocessing procedures for
the documents. We remove all Retweets, and Tweets that contain
URLs, to ensure that words appear in their original contexts and
that the meaning of the Tweets do not depend on external content.
Then we tokenize all the texts (including reviews and Tweets) into
words, convert them into lowercase, and shorten the words with
redundant characters into their canonical forms (e.g., “cooooool” is
converted to “cool”). As Japanese words are not separated by white
spaces, we use a tokenization tool called MeCab [2] to segment
Japanese documents. In addition, we use special tokens to replace
mentions and numbers. The processed emoji-Tweets provide the
ES and ET datasets, whose statistics are presented in Table 1.

4.2 Implementation Details
We learn the initial word embeddings using the skip-gram model
with the window-size of 5 on the raw Tweets. The word vectors
are then ne-tuned during the sentence representation learning
phase. In the representation learning phase, to regularize our model,
L2 regularization with parameter 10−6 is applied for embedding
weights. Dropout is applied at the rate of 0.5 before the softmax
layer. The hidden units of bi-directional LSTM layers are set as 1,024
(512 in each direction). We randomly split the emoji-Tweets into the
training, validation, and test sets in the proportion of 7:2:1. Accord-
ingly, we use early stopping [17] to tune hyperparameters based
on the validation performance through 50 epochs, with mini-batch
size of 250. We used the Adam algorithm [35] for optimization, with
the two momentum parameters set to 0.9 and 0.999, respectively.
The initial learning rate was set to 10−3. In the phase of training the
sentiment classier, for exhaustive parameter tuning, we randomly
select 90% of the labeled data as the training set and the remaining
10% as the validation set. The whole framework is implemented
with TensorFlow [11].

4.3 Baselines and Accuracy Comparison
To evaluate the performance of ELSA, we employ three representa-
tive baseline methods for comparison:

MT-BOW uses the bag-of-words features to learn a linear clas-
sier on the labeled English data [50]. It uses Google Translate to
translate the test data into English and applies the pre-trained clas-
sier to predict the sentiment polarity of the translated documents.

CL-RL is the word-aligned representation learning method pro-
posed by Xiao and Guo [58]. It constructs a unied word representa-
tion that consists of both language-specic components and shared
components, for the source and the target languages. To establish
connections between the two languages, it leverages Google Trans-
late to create a set of critical parallel word pairs, and then it forces
each parallel word pair to share the same word representation. The
document representation is computed by taking the average over
all words in the document. Given the representation as features, it
trains a linear SVM model using the labeled English data.

Table 2: The accuracy of ELSA (standard deviations in paren-
theses) and baseline methods on the nine benchmark tasks.

Language Domain MT-BOW CL-RL BiDRL ELSA

Japanese
Book 0.702 0.711 0.732 0.783 (0.003)
DVD 0.713 0.731 0.768 0.791 (0.004)
Music 0.720 0.744 0.788 0.808 (0.005)

French
Book 0.808 0.783 0.844 0.860 (0.002)
DVD 0.788 0.748 0.836 0.857 (0.002)
Music 0.758 0.787 0.825 0.860 (0.002)

German
Book 0.797 0.799 0.841 0.864 (0.001)
DVD 0.779 0.771 0.841 0.861 (0.001)
Music 0.772 0.773 0.847 0.878 (0.002)

BiDRL is the document-aligned representation learning method
proposed by Zhou et al. [62]. It uses Google Translate to create la-
beled parallel documents and forces the pseudo parallel documents
to share the same embedding space. It also enforces constraints to
make the document vectors associated with dierent sentiments
fall into dierent positions in the embedding space. Furthermore,
it forces documents with large textual dierences but the same
sentiment to have similar representations. After this representation
learning process, it concatenates the vectors of one document in
both languages and trains a logistic regression sentiment classier.

As the benchmark datasets have quite balanced positive and
negative reviews, we follow the aforementioned studies to use ac-
curacy as an evaluation metric. All the baseline methods have been
evaluated with exactly the same training and test data sets used in
previous studies [62], so we make direct comparisons with their
reported results. Unfortunately, we cannot obtain the individual
predictions of these methods, so we are not able to report the sta-
tistical signicance (such as McNemar’s test [25]) of the dierence
between these baselines and ELSA. To alleviate this problem and
get robust results, we run ELSA 10 times with dierent random ini-
tiations and summarize its average accuracy and standard deviation
in Table 2, as well as the reported performance of the baselines.

As illustrated in Table 2, ELSA outperforms all three baseline
methods on all nine tasks. Looking more closely, the performance
of all methods in Japanese sentiment classication is worse than
in French and German tasks. According to the language systems
dened by ISO 639 [10], English, French, and German belong to the
same language family (i.e., Indo-European), while Japanese belongs
to the Japonic family. In other words, French and German are more
in common with English, and it is expected to be easier to translate
English texts into French and German and transfer the sentiment
knowledge from English to them. Therefore, in fact, Japanese tasks
are most dicult and none of the previous methods have been able
to achieve an accuracy above 0.8. It is encouraging to nd that ELSA
achieves an accuracy of 0.808 on the Japanese music task and an
accuracy close to 0.8 (0.791) on the Japanese DVD task. The 0.783
accuracy on the book task is also non-negligible as it improves on
the best existing model by almost 7 percent. In addition, although
the French and German tasks are a little easier than the Japanese
ones, none of the existing approaches can achieve an accuracy over
0.85 on any of the six tasks. However, our approach can achieve a
mean accuracy higher than 0.85 on all of the six tasks.

Next, we compare the resultsmore thoroughly and further demon-
strate the advantages of our approach. As is shown, the
representation learning approaches (CL-RL, BiDRL, and ELSA) all
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outperform the shallow method MT-BOW on most tasks. This is
reasonable as representation learning approaches embed words
into high-dimensional vectors in a continuous semantic space and
thus overcome the feature sparsity issue of traditional bag-of-words
approaches. Furthermore, we observe that the document-level repre-
sentation approaches (BiDRL and ELSA) outperform the word-level
CL-RL. This indicates that incorporating document-level informa-
tion into representations is more eective than focusing on indi-
vidual words. Finally, ELSA outperforms the BiDRL on all tasks. In
order to narrow the linguistic gap, BiDRL leverages only pseudo
parallel texts to learn the common sentiment patterns between
languages. Besides the pseudo parallel texts, ELSA also learns from
the emoji usage in both languages. On the one hand, as a ubiquitous
emotional signal, emojis are adopted across languages to express
common sentiment patterns, which can complement the pseudo
parallel corpus. On the other hand, the language-specic patterns
of emoji usage help incorporate the language-specic knowledge
of sentiments into the representation learning, which can benet
the downstream sentiment classication in the target language. As
a next step, we explore the role of emojis in the learning process
with a more comprehensive investigation.

4.4 The Power of Emojis
To further evaluate the contribution of emojis in ELSA, we con-
duct subsequent experiments to investigate the eects of emojis
from three perspectives, i.e., overall performance, eectiveness of
representation learning, and text comprehension.

4.4.1 Overall Performance. To understand how emojis aect cross-
lingual sentiment classication in general, a straightforward idea
is to remove the emoji-prediction phase and compare simplied
versions of ELSA:

N-ELSA removes the emoji-prediction phase of both languages
and directly uses two attention layers to realize the transformation
from word vectors to the nal document representation. There is
no emoji data used in this model.

T-ELSA removes the emoji-based representation learning on
the English side. It uses the emoji-powered representations for the
target language and translates labeled English documents into the
target language to train a sentiment classier for the target language.
This model only leverages emoji usage in the target language.

S-ELSA removes the emoji-based representation learning in
the target language. It uses the emoji-powered representations of
English and trains a sentiment classier based on labeled English
documents. Documents in the target language are rst translated
into English and then classied. This model only leverages emoji
usage in the source language (i.e., English).

Test accuracy of these models is illustrated in Table 3. We nd
that ELSA outperforms N-ELSA on all nine tasks. N-ELSA is only a
little better than uniform guess (50%) since it learns the common
patterns between languages only from pseudo parallel texts and
does not incorporate sentiment information eectively. An alterna-
tive conjecture is that 2,000 reviews are insucient to train such a
complex model, which may have led to the problem of over-tting.

To test between the two hypotheses, we mix up the labeled re-
views in English and in the target language and randomly select

Table 3: Performance of ELSA and its simplied versions.

Language Domain N-ELSA T-ELSA S-ELSA ELSA

Japanese
Book 0.527* 0.742* 0.753* 0.783
DVD 0.507* 0.756* 0.766* 0.791
Music 0.513* 0.792* 0.778* 0.808

French
Book 0.505* 0.821* 0.850* 0.860
DVD 0.507* 0.816* 0.843* 0.857
Music 0.503* 0.811* 0.848* 0.860

German
Book 0.513* 0.804* 0.848* 0.864
DVD 0.521* 0.790* 0.849* 0.861
Music 0.513* 0.818* 0.863* 0.878

* indicates the dierence between ELSA and its simplied versions is statistically
signicant (p < 0.05) by McNemar’s test.

2,000 examples from the mixed set for training and use the remain-
ing samples as a new test set. All other settings of the experiment are
kept the same except for the new train/test split. Trained and tested
in this way, the accuracy of N-ELSA becomes acceptable, with an av-
erage accuracy of 0.777 on all tasks. This indicates that over-tting
might not have been the major reason, while language discrepancy
might be. Indeed, N-ELSA can still work well if we eectively in-
corporate cross-language sentiment information into the training
process. More specically, the original N-ELSA is dominated by
English sentiment information learned from pseudo parallel texts
and fails to generalize to the target language correctly. When we
input the sentiment information (labeled documents) of both Eng-
lish and the target language into the model, performance improves.
Unfortunately, in a cross-lingual sentiment classication setting,
we can not acquire enough labels in the target language. Emojis
help the model capture generalizable sentiment knowledge, even if
there is no labeled example for training in the target language.

In addition, ELSA also consistently achieves better accuracy
compared to T-ELSA and S-ELSA on all tasks (McNemar’s test [25]
is performed and the dierences are all statistically signicant at
the 5% level). The superiority of ELSA shows that only extract-
ing sentiment information from one language is not enough for
the cross-lingual sentiment task and that incorporating language-
specic knowledge for both languages is critical to the model’s
performance. Indeed, S-ELSA fails to capture sentiment patterns
in the target language; and T-ELSA falls short in extracting trans-
ferable sentiment patterns from English (indicating that emojis are
still benecial even if there are sentiment labels in a language).

4.4.2 Eectiveness of Representation Learning. To better under-
stand the sentiment information learned through the emoji usage,
we then conduct an empirical experiment at the word representa-
tion level. Recall that after the word embedding phase, each individ-
ual word can be represented by a unique vector and that these word
vectors are then ne-tuned in the emoji-prediction phase. Next,
we would like to evaluate whether sentiment information is bet-
ter captured by the new word representations under the eects of
emojis. We sample 50 English words with distinct sentiments from
the MPQA subjectivity lexicon [1] based on their frequencies in
our corpus. These words are manually labeled in terms of positive
or negative polarity from MPQA, and we regard these labels as the
ground-truth for further evaluation.
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(a) Clusters of selected words with Word2Vec representations. (b) Clusters of selected words with emoji-powered representations.

Figure 3: Comparison of word representations with and without emoji prediction.

(a) Word and sentence attention distribution generated by N-ELSA.

(b) Word and sentence attention distribution generated by ELSA.

Figure 4: Case study: Eect of emojis on text comprehension.

We expect that an informative representation can embed words
with same sentiment polarity closely in the vector space. To mea-
sure and illustrate the similarity, we calculate the similarity score
between every two words using the cosine of the corresponding
embedding vectors. Based on the cosine similarity, we perform a

hierarchical clustering [15] and visualize the clustering results in
Figure 3. The color scale of each cell indicates the similarity be-
tween the two words. The darker the cell, the more similar the
representations of the two words.
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(a) Unlabeled data: Japanese tasks (b) Unlabeled data: French tasks (c) Unlabeled data: German tasks

(d) Labeled English data: Japanese tasks (e) Labeled English data: French tasks (f) Labeled English data: German tasks

Figure 5: Accuracy of ELSA when size of unlabeled and labeled data changes.

In Figure 3(a), we use naive embeddings learned by Word2Vec
(no emoji), and words with dierent sentiments cannot be clearly
separated. Many words with dierent sentiments are embedded
closely, for example, “generous” and “picky” in the bottom right sec-
tion. This indicates that shallowword embeddings do not eectively
capture the sentiment information.

In contrast, in Figure 3(b), we can easily observe two clusters
after the ne-tuned emoji-prediction model. The top left corner
cluster contains the positive words, while the bottom right corner
contains the negative words. Only one positive word, “sure,” is
incorrectly clustered with negative words. By checking the contexts
of this word in our corpus, we nd it is usually co-used with both
positive and negative words, making its polarity ambiguous. The
correct clustering of nearly all the words indicates that emoji usage
is an eective channel to capture sentiment knowledge, which is
desirable for downstream sentiment classication.

4.4.3 Text Comprehension. We then explore how the emoji-powered
representations benet text comprehension. We select a represen-
tative case that is incorrectly classied by N-ELSA but correctly
classied by ELSA. This case is selected from the Japanese test
samples and we use the segment of its translated English version
for illustration in Figure 4. Although the whole document expresses
dissatisfaction with an album, it is not that easy to identify this
intent directly from each single sentence due to the translation
quality and the document’s complex compositions. For example,
if we consider only the third sentence without context, the author
seems to express a positive attitude. However, in fact, the author
expresses an obviously negative attitude in the fourth and sixth
sentences.

In Figure 4, we present the attention distribution of words and
sentences generated by N-ELSA and ELSA, which indicates how
the two models comprehend this document, or the rationale behind
their classication decisions. We use the color scale of the back-
ground to indicate the attention scores of words in each sentence.

The darker the word, the more it is attended to. For each sentence,
we list its attention score in this document. In Figure 4(b), we also
list the top 3 emojis ELSA predicts for each sentence, which may
indicate its sentiment polarity predicted by ELSA.

Let us rst look at Figure 4(a), which demonstrates how N-ELSA
processes the sentiment information. On the word level, N-ELSA
tends to focus more on neutral words like “song” or “album” instead
of sentimental words. On the sentence level, an extremely high
attention is placed on the fth sentence. However, the fth sentence
describes how the album is dierent from the rst one and it does
not express the obviously negative sentiment.

In contrast, after incorporating of emojis, ELSA is able to work
with a proper logic (see Figure 4(b)). ELSA places its attention to
the emotional adjectives, such as “interesting” and “not possible,”
and contrast conjunctions such as “however.” Thus, it manages to
identify the sentiment of each sentence as expected, which can
be further explained by the predicted emojis on the left. Besides
the most popular in our corpus, and predicted for the
fourth and sixth sentence indicate the negative sentiment of the
author, while and in the third sentence indicate positive
sentiment. Then on the sentence level, ELSA places less attention
to the positive third sentence, while centering upon the fourth
and the sixth sentences. Through this comparison, we can see that
emojis bring additional knowledge to the text comprehension and
make the attention mechanism more eective.

5 DISCUSSION
So far, we have presented the performance of ELSA on benchmark
datasets and demonstrated the power of emojis in our learning
process. There are some issues that could potentially aect its
eectiveness and eciency, which call for further discussion.
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5.1 Sensitivity on Data Volume
As we learn text representations from large amount of Tweets, we
want to investigate whether ELSA works well with a smaller vol-
ume of data. First, we investigate the size of unlabeled data. The
English representation model, once learned, can be reused by any
other English-target language pair. We only need to scale down the
Tweets and emoji-Tweets in the target language and observe the
changes in performance on benchmarks. In details, we use 80%, 60%,
40%, and 20% of the collected Tweets to re-train the target-language
representation model and keep the nal supervised training xed.
We summarize the results in Figures 5(a), 5(b), and 5(c). For the
Japanese tasks, when we scale down the unlabeled data, the perfor-
mance gets slightly worse. Comparing the results using 20% and
100% of the Tweets, the accuracy dierences in three domains are
0.021, 0.014, and 0.018, respectively. For French and German, the
performance uctuates less than 0.01. Most importantly, ELSA can
outperform the existing methods on all nine tasks even with the 20%
unlabeled data. This indicates that even though a target language
is not as actively used on Twitter, our approach still works.

Furthermore, although there are more labeled examples in Eng-
lish than other languages, in general, labels are still scarce. Hence,
if a model can rely on even fewer labeled English documents, it
is very desirable. To test this, we scale down the labeled data by
80%, 60%, 40%, and 20%. As shown in Figures 5(d), 5(e), and 5(f), the
performance of ELSA slightly declines with the decrease of labels,
but even with 20% labels (i.e., 400 labeled English samples), ELSA
outperforms the existing methods using all 2,000 labeled samples
on almost all tasks. This shows that with the help of large-scale
emoji-Tweets, the model is less dependent on sentiment labels.

5.2 Generalizability
Most previous cross-lingual sentiment studies [50, 58, 62] used
the Amazon review dataset for evaluation. To compare with them,
we also adopt this dataset in the main experiment of this paper.
Sentiment classication in other domains such as social media is
also important. Can ELSA still work well in a new domain? To
evaluate the generalizability of our approach, we apply ELSA to a
representative type of social media data – Tweets. As Tweets are
short and informal, sentiment classication for them is considered
to be a big challenge [28].

As cross-lingual studies on Tweets are very limited, we take only
one recent cross-lingual method (MT-CNN) proposed by Deriu et
al. [23] for comparison. It also relies on large-scale unlabeled Tweets
and a translation tool. It rst trains a sentiment classier for English
and then applies it to the translations of text documents in the target
language. The training process for English Tweets contains three
phases. First, it uses raw Tweets to create word embeddings just
like our method. Second, it leverages “:)” and “:(” as weak labels and
applies a multi-layer CNN model to adapt the word embeddings.
Finally, it trains the model on labeled English Tweets. This work
and our work both have coverage of French and German Tweets,
so we use the two as the target languages for comparison.

As the sentiment-labeled Tweets used by [23] are released in
forms of Twitter IDs and some of them are no longer available
now, we cannot directly compare our model to the reported results
in [23]. For fair comparison, we reproduce their method on the

Table 4: The sizes of labeled Tweets collected.

Dataset Language Positive Neutral Negative
Training English [8] 5,101 3,742 1,643
Validation English [7] 1,038 987 365

Test French [4] 987 1,389 718
German [6] 1,057 4,441 1,573

Table 5: Classication accuracy on French and German
Tweets.

Language ELSA MT-CNN Uniform Guess
French 0.696 0.535* 0.451*
German 0.809 0.654* 0.628*

*indicates the dierence between ELSA and the baseline methods is statistically
signicant (p < 0.05) by McNemar’s test.

labeled Tweets that can still be collected. Based on the pre-trained
representation models of MT-CNN [5] and ELSA, we use the same
labeled English Tweets to train and validate the two classiers and
then test them on the same data (i.e., labeled French and German
Tweets that can be collected). We list the sizes of the labeled English,
French, and German Tweets we use in Table 4. From the distribution,
a naive baseline using uniform guess would achieve an accuracy of
0.451 for French and 0.628 for German.

Results are summarized in Table 5. The two approaches both
outperform uniform guess, and ELSA outperforms the MT-CNN by
0.161 on French task and 0.155 on German task. Although we use
the same training, validation, and test set for both approaches, we
are still concerned about whether the pre-trained representation
models have introduced unfairness. Specically, if we have used
more unlabeled Tweets for representation learning than MT-CNN,
our outstanding performance may simply attribute to the size of
data. To answer this question, we refer to [23] about their data
size. We nd that they uses 300M raw Tweets and 60M Tweets
containing “:)” and “:(” for representation learning. In contrast,
we only used 81M raw Tweets and 13.7M emoji-Tweets in three
languages combined. Considering that emoticons are signicantly
less used than emojis on Twitter [48], although they use about 4.4
times more weak-labeled Tweets, these Tweets had to be collected
from much more than 4.4 times of raw Tweets than ours. It is clear
ELSA outperforms MT-CNN and relies less on data size.

6 CONCLUSION
As a ubiquitous emotional signal, emojis are widely adopted across
languages to express sentiments. We leverage this characteristic of
emojis, both using them as surrogate sentiment labels and using
emoji prediction an instrument to address the language discrepancy
in cross-lingual sentiment classication. We have presented ELSA,
a novel emoji-powered representation learning framework, to cap-
ture both general and language-specic sentiment knowledge in
the source and the target languages for cross-lingual sentiment clas-
sication. The representations learned by ELSA capture not only
sentiment knowledge that generalizes across languages, but also
language-specic patterns. We evaluate ELSA with comprehensive
experiments on various benchmark datasets, which outperforms
the state-of-the-art cross-lingual sentiment classication methods
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even when the size of labeled and unlabeled data decreases. The
promising results indicate that emojis may be used as an a general
instrument for text mining tasks that suer from the scarcity of la-
beled examples, especially in situations where an inequality among
dierent languages presents.
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