
FaceOff: Assisting the Manifestation Design of
Web Graphical User Interface

Shuyu Zheng
Peking University

zhengshuyu@pku.edu.cn

Ziniu Hu
Peking University
bull@pku.edu.cn

Yun Ma∗
Tsinghua University

yunma@tsinghua.edu.cn

ABSTRACT
Designing desirable and aesthetical manifestation of web graphic

user interfaces (GUI) is a challenging task for web developers. Af-
ter determining a web page’s content, developers usually refer to
existing pages, and adapt the styles from desired pages into the
target one. However, it is not only difficult to find appropriate pages
to exhibit the target page’s content, but also tedious to incorpo-
rate styles from different pages harmoniously in the target page.
To tackle these two issues, we propose FaceOff, a data-driven au-
tomation system that assists the manifestation design of web GUI.
FaceOff constructs a repository of web GUI templates based on
15,491 web pages from popular websites and professional design
examples. Given a web page for designing manifestation, FaceOff
first segments it into multiple blocks, and retrieves GUI templates in
the repository for each block. Subsequently, FaceOff recommends
multiple combinations of templates according to a Convolutional
Neural Network (CNN) based style-embedding model, which makes
the recommended style combinations diverse and accordant. We
demonstrate that FaceOff can retrieve suitable GUI templates with
well-designed and harmonious style, and thus alleviate the devel-
oper efforts.

KEYWORDS
Web design mining, Web design assistance, Template retrieval

ACM Reference Format:
Shuyu Zheng, Ziniu Hu, and Yun Ma. 2019. FaceOff: Assisting the Man-
ifestation Design of Web Graphical User Interface. In The Twelfth ACM
International Conference on Web Search and Data Mining (WSDM ’19), Feb-
ruary 11–15, 2019, Melbourne, VIC, Australia. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3289600.3290610

1 INTRODUCTION
For web developers, developing a web page calls for designing

not only the page’s content and functionality but also the mani-
festation of graphical user interfaces (GUI), which determines the
appearance of the page. Well-designed manifestation can result
in an eye candy touch to attract users’ attention. Basically, GUI’s
manifestation considers the neatness and usability of the layout,
harmony in color combination, overall design style and so on. Since
these considerations require a good taste of art and beauty, it is
arduous for developers to efficiently design decent manifestation.
∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WSDM ’19, February 11–15, 2019, Melbourne, VIC, Australia
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5940-5/19/02. . . $15.00
https://doi.org/10.1145/3289600.3290610

Given a page under design (PUD), a common practice of design-
ing manifestation is to browse through well-designed pages, pick
desired styles that satisfy the content, and integrate these styles into
the page. However, it is not only difficult to find appropriate pages
for exhibiting the PUD’s content, but also tedious to incorporate
styles from different pages harmoniously in the PUD.

To tackle these two issues, in this paper, we propose FaceOff, a
data-driven automation system that assists the manifestation design
of web GUI. Given a PUD’s source files (including HTML, JavaScript,
images, etc.) as input, the goal of FaceOff is to recommend CSS
style rules according to the structure (DOM tree after rendering the
HTML) and content (text, images or videos) of the input web page.

The design of FaceOff is driven by two ideas. First, according
to a previous study [7], a web page can be divided into several
templates with different functionalities, such as information cards
with pictures, footers with link and copyright information, headers
with drop-down menus, etc. Although different web pages may
have different contents, they usually share templates that have the
same functionality, so that the styles of these templates could be
utilized to design new web pages. Second, styles from the same web
page should be well accordant with each other. If we could learn
how the styles of different templates are combined harmoniously
in one web page, then it is possible to select proper combinations
of styles from different web pages to be integrated into a new web
page.

To this end, we first construct a repository of web GUI based
on 15,491 web pages from popular websites and professional de-
sign examples. Next, we extract the common templates among
different pages in this repository. Then we build a style-embedding
model, which uses convolution neural network (CNN) to encode
the compiled image of each GUI template. The image of templates
with harmonious style will be mapped adjacently in the embed-
ding space. We regard the templates from the same original web
page are harmonious with each other, so as to learn the embedding
model. Given a PUD, FaceOff segments it into multiple blocks, and
retrieves the matched GUI templates for each block. Then Face-
Off recommends multiple and diverse style combinations for each
retrieved template based on the style-embedding model. Finally,
the developer can choose one desired style combination and get a
well-designed web page. Note that the output well-designed web
page may still need minor changes made manually by developers
in order to fit the content more properly.

2 RELATEDWORK
In this section, we first introduce the related work on design

mining and design assisting tools. Then we highlight the differences
of our system from the related work.
• Design Mining. The data-driven approaches have been applied
to design mining for revealing visual evolution and design patterns.
Chen et al. [5] revealed the important landmarks in the aesthetic
evolution of web pages from three aspects: information architecture

Demonstration Paper WSDM ’19, February 11–15, 2019, Melbourne, VIC, Australia

774

https://doi.org/10.1145/3289600.3290610
https://doi.org/10.1145/3289600.3290610

models, visual flavor and the media composition. Doosti et al. [6]
adopted CNN to characterize the web design style, and further ana-
lyzed the style shift through the long history. In addition, previous
work has made efforts to quantify visual appeal. Lindgaard et al.
[10] revealed that people judge visual appeal as well as trust and us-
ability of homepages consistently. Reinecke et al. [13] implemented
imagemetrics to quantify colorfulness and visual complexity of web
pages, and developed a model to predict perceived visual appeal.
•Design Assisting Tools. The idea of assisting developers to con-
duct design has attracted research attentions in recent years. One
line of work assists developers to write GUI code more efficiently.
Kumar et al. [9] focused on the design mapping where the content
of a web page can be transferred into a given template. Nguyen et
al. [12] used Optical Character Recognition (OCR) and Computer
Vision (CV) techniques to analyze the design sketch, in order to
help generate GUI code automatically. Beltramelli et al. [4] further
advanced this idea of generating GUI code from images by adopting
deep learning models. Another line of work explores the design
style itself, and can assist generating better design. Kumar et al. [8]
implemented Webzeitgeist, which supports to access the page ele-
ments and their properties with the goal of conducting large-scale
machine learning and statistical analysis on web design. Yang et al.
[14] presented automatic generation in the field of visual-textual
presentation layout. They train the model by explicitly learning
some aesthetic principles with domain knowledge, including topic-
dependent emotion, typography and color harmonization.

Our system, FaceOff, differs from the previous assisting tools
mainly in the following two points. First, FaceOff transforms the
task of design into a template retrieval problem, which takes both
the structure and design style into consideration. Second, FaceOff
learns the design style basically in an unsupervised manner, rather
than the human defined rules, so that the learned knowledge can
be more diverse.

3 SYSTEM
In this section, we first discuss the problem of manifestation

design. Next, we present the overview of our proposed system.
Then, we show how to collect and construct the GUI repository.
Finally, we describe the two main components of FaceOff in detail,
which are template retriever and style recommender.

3.1 Problem Statement
In this paper, we denote the manifestation of a web GUI as the

combination of Structure (T), Content (C) and Style (S). Structure (T)
is the DOM tree obtained after rendering an HTML, which records
how different nodes are organized in a tree structure. Content (C)
represents the text, image or video of each node in the tree. Style
(S) can be inferred from the CSS rules of each node in the DOM
tree. It determines the visual representation of the content, such as
width, height, color, and border type.

The ultimate goal of our system is to assist the manifestation
design. More specifically, given the input of {T ,C}, which indicates
how a web page is organized and its content information, our
system should provide a referenced style S to optimize the overall
manifestation.

However, such a problem cannot be solved directly. On one hand,
there is no quantitative definition of how fitness a manifestation
is since the judgment of manifestation is more or less subjective.
On the other hand, the searching space of style S is the whole
space of CSS rules, making it impossible to enumerate the styles.

Figure 1: The system architecture overview of FaceOff.

Therefore, we resort to current well-designed web pages to narrow
our searching space, which leads to our approach.

Our basic idea is to find suitable and harmonious GUI templates
from a large-scale web page repository. A template is a common sub-
structure that appears on multiple web pages, such as information
cards, headers and footers. For a new page to be designed, we aim to
retrieve templates that fit the structure of the page, and recommend
combinations of these templates which are harmonious in style. In
this way, we can come up with a well-designed web page.

3.2 System Overview
Figure 1 shows an overview of FaceOff. We capture the styles

and snapshots of web pages from popular websites and professional
design examples, and then construct a repository of web GUI. Given
a PUD as input, FaceOff first renders the web page in a headless
browser to acquire the DOM tree of the web page. The template re-
triever segments the DOM tree into multiple subtrees and retrieves
the matched GUI templates for each subtree. FaceOff recursively
finds out the optimized segmentation as well as several top matched
templates. The next step is to recommend template combinations.
The style recommender consists of a style-embedding model to
encode the style of each template, and a pairwise harmoniousness
scorer to calculate whether two templates are accordant with each
other in style. With these two parts, the style recommender can
find out a set of combinations sorted by their total harmoniousness
score. The output of the system is a series of ranked well-designed
pages for the developer to choose from.

3.3 GUI Repository
We collect a large number of well-designed web pages with

their DOM tree, style information (279 CSS rules of each node
through JavaScript getComputedStylemethod), and manifestation
(screenshot of the web page). Totally, we collect 15,491 different
web pages from professional design examples including Bootstrap
examples [2] and Webby Awards gallery [3], and popular websites
from Alexa top sites [1]. Then, we extract templates from these web
pages. We assume that the structure can reflect the functionality
of the GUI. Therefore, for each page, we cut out all subtrees from
the original DOM tree, and use the subtree as index to identify a
template.We group all the subtreeswith the same structure together,
forming a GUI template. Therefore, subtrees in a GUI template have
the same structure but different styles.

3.4 Template Retriever
After getting the DOM tree by rendering the PUD, a template

retriever will retrieve templates in the GUI repository that match

Demonstration Paper WSDM ’19, February 11–15, 2019, Melbourne, VIC, Australia

775

Figure 2: The overall workflow of FaceOff, to transform a poor-designed hotel-booking page into a well-designed one.

the given structure. It first segments the PUD into several blocks
by dividing the DOM tree into multiple subtrees. The segmentation
is based on the structural similarity of subtrees between blocks
and GUI templates in the GUI repository. We use a variant of tree
edit distance algorithm proposed by Zhang et al. [15] to define the
structural similarity of subtrees.

Furthermore, in order to find out the segmentation faster, we
adopt a top-down searching algorithm. First, we can find the tem-
plate in our repository with the least matching gap with the given
DOM tree. Then, we divide all the children into subtrees, and apply
this algorithm recursively to these subtrees. If the sum of matching
gap of all these subtrees is less than that of the complete tree, we
should segment it. In this way, we can recursively find out the
optimized segmentation to minimize the overall matching gap, and
meanwhile retrieve all the templates.

3.5 Style Recommender
After the above operations, FaceOff can retrieve a GUI template

for each segmented block. As mentioned before, a GUI template
contains several subtrees with different styles. However, not all style
combinations of GUI templates are in accordance with the whole
manifestation. Therefore, the style recommder is to recommend
subtree combinations whose styles are harmonious with each other.

To this end, we propose a style-embedding model, which uses a
CNN to encode the compiled image of a subtree, and uses a pair-
wise cosine similarity to model the score of style harmoniousness.
To train such an embedding model, we assume that subtrees from
the same original DOM tree should be accordant in style with
each other since web pages in our repository are well designed.
Specifically, we extract the subtrees from the same web page as
positive data, and randomly sample some subtrees from different
web pages as negative data. To represent the style of the subtree,
we use the snapshot of the subtree as input, which is rendered
based on the CSS rules of each node of the subtree. In this way,
the learned style-embedding model will map the subtrees from the
same web page closely, and thus can learn to discriminate style
harmoniousness.

Using this embedding model, we can calculate the style harmo-
niousness score of two subtrees, and can thus recommend a set
of combinations sorted by their total harmoniousness score. Af-
terwards, the developer can choose the desired combination, and
FaceOff will use the content of the source HTML file along with the

Figure 3: 20 clusters of the sampled templates, each repre-
senting a functionality group.

Figure 4: Three template examples of cluster No.12 (Image-
Text Cards), with their subtree and several styles.

selected combination of template styles to compile and generate a
well-designed web page with harmonious style.

4 DEMONSTRATION
In this section, we first demonstrate how our system can assist

manifestation design with a concrete example, and then illustrate
the effectiveness of the template retriever and style recommender.

4.1 Overall Workflow Demonstration
First, we use an illustrative example to show the overall work-

flow of our system1. As shown in Figure 2, suppose a developer is
1A video of this workflow demonstration is provided at https://youtu.be/lvGaiSSVcyM.

Demonstration Paper WSDM ’19, February 11–15, 2019, Melbourne, VIC, Australia

776

https://youtu.be/lvGaiSSVcyM

Figure 5: Image embedding results of 5 sampled web pages.
The color indicates the original web page.

going to design a web page for hotel booking. She has already pre-
pared the content, including some links, a picture of the hotel, brief
introduction, room prices, and several comments from customers.
The HTML file without any style information is visualized in part
a of Figure 2.

Part b and c in Figure 2 show the intermediate results of FaceOff
given the raw input in a. FaceOff divides the DOM tree into subtrees,
and retrieves templates with the structure of these subtrees, which
are most similar to the input one in functionality. Part c shows
two template examples of each segmented subtree, which share the
same structure, but exhibit different designs. From these template
examples, we can figure out that the input web page exhibits the
functionality of a header, an image-text card containing two images,
and a list of image-paragraph cards. The optimal style combination
comprises the three template examples with dotted frames, which
is selected by style recommender from the repository.

Part d in Figure 2 presents the final output of FaceOff after com-
piling and rendering in the browser. The visualization of the output
web page is more attractive and harmonious in style compared with
the raw input. The result demonstrates that FaceOff can recommend
well-designed templates and greatly alleviate the developer efforts.

4.2 Effectiveness of Template Retriever
We assume that each template may reflect a certain kind of func-

tionality of web pages. Thus we sample 2000 subtrees from the
repository, calculate the distance matrix and apply T-SNE [11] to
visualize them. We next use K-means to find 20 clusters among
these subtrees. As shown in Figure 3, the subtrees are clustered into
separated groups, each of which represents a particular functional-
ity. For example, the groups highlighted by circles are image-text
cards, navigation header, search bar and copyright footer. This re-
sult demonstrates our assumption on the correspondence between
structure and functionality.

To further illustrate the functionality, we explicitly show three
subtrees of cluster No.12, which represents image-text cards in
Figure 4. We can see that all the subtrees contain image and text in
an organized manner. The image of template examples can further
illustrate that these templates are indeed of image-text card func-
tionality. In addition, it shows that there are diverse design styles for
the same subtree, laying the foundation of the style recommender.

4.3 Effectiveness of Style Recommender
Based on our learning objective, the learned style-embedding

model should map the templates in the same web page closer. To

evaluate this objective, we randomly choose five web pages in our
repository, calculate the embedded vectors of all the templates in
these pages, and visualize them using T-SNE. As indicated from Fig-
ure 5, the templates from the same web page are grouped together,
except for a small quantity of special cases. This result indicates
that our style-embedding model can capture the diverse design
style among different web pages.

5 CONCLUSION AND FUTUREWORK
In this paper, we propose to assist manifestation design by re-

trieving suitable and harmonious GUI templates. To do so, we con-
struct a large-scale web design template repository, and use the
structure matching algorithm to implement a template retriever.
We further design a matching task to train a CNN-based style em-
bedding model to find the optimal combination of templates with
harmonious style. We finally demonstrate how our system can
effectively assist manifestation design of web GUI.

As for the future work, we plan to conduct a user study to eval-
uate the effectiveness of FaceOff, by applying it to existing web
pages, and inviting real developers to compare the manifestation
recommended by FaceOff and the original manifestation of the
page. In addition, we plan to estimate time savings resulting from
automatically generating CSS rules against relying on human de-
signers.

ACKNOWLEDGMENTS
This work was supported by the National Natural Science Foun-

dation of China under grant number 61725201, China Postdoctoral
Science Foundation, and an Open Project Fund of National Engi-
neering Lab of Big Data System Software of China.

REFERENCES
[1] Alexa top sites. https://www.alexa.com/topsites/, 2018.
[2] Bootstrap featured examples. http://www.youzhan.org/, 2018.
[3] The webby awards. https://www.webbyawards.com/, 2018.
[4] T. Beltramelli. pix2code: Generating code from a graphical user interface screen-

shot. In Proceedings of EICS 2018, pages 3:1–3:6, 2018.
[5] W. Chen, D. J. Crandall, and N. M. Su. Understanding the aesthetic evolution of

websites: Towards a notion of design periods. In Proceedings of CHI 2017, pages
5976–5987, 2017.

[6] B. Doosti, D. J. Crandall, and N. M. Su. A deep study into the history of web
design. In Proceedings of WebSci 2017, pages 329–338, 2017.

[7] D. Gibson, K. Punera, and A. Tomkins. The volume and evolution of web page
templates. In Proceedings of WWW 2013, pages 830–839, 2005.

[8] R. Kumar, A. Satyanarayan, C. Torres, M. Lim, S. Ahmad, S. R. Klemmer, and J. O.
Talton. Webzeitgeist:design mining the web. In Proceedings of CHI 2013, pages
3083–3092, 2013.

[9] R. Kumar, J. O. Talton, S. Ahmad, and S. R. Klemmer. Bricolage: example-based
retargeting for web design. In Proceedings of CHI 2011, pages 2197–2206, 2011.

[10] G. Lindgaard, C. Dudek, D. Sen, L. Sumegi, and P. Noonan. An exploration
of relations between visual appeal, trustworthiness and perceived usability of
homepages. ACM Transactions on Computer-Human Interaction, 18(1):1–30, 2011.

[11] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

[12] T. A. Nguyen and C. Csallner. Reverse engineering mobile application user
interfaces with remaui. In Proceedings of ASE 2015, pages 248–259, 2015.

[13] K. Reinecke, T. Yeh, L. Miratrix, R. Mardiko, Y. Zhao, J. Liu, and K. Z. Gajos.
Predicting users’ first impressions of website aesthetics with a quantification of
perceived visual complexity and colorfulness. In Proceedings of CHI 2013, pages
2049–2058, 2013.

[14] X. Yang, T. Mei, Y. Q. Xu, Y. Rui, and S. Li. Automatic generation of visual-textual
presentation layout. ACM Transactions on Multimedia Computing Communica-
tions & Applications, 12(2):1–22, 2016.

[15] Zhang and Shasha. Simple fast algorithms for the editing distance between trees
and related problems. Siam Journal on Computing, 18(6):1245–1262, 1989.

Demonstration Paper WSDM ’19, February 11–15, 2019, Melbourne, VIC, Australia

777

https://www.alexa.com/topsites/
http://www.youzhan.org/
https://www.webbyawards.com/

	Abstract
	1 Introduction
	2 Related Work
	3 System
	3.1 Problem Statement
	3.2 System Overview
	3.3 GUI Repository
	3.4 Template Retriever
	3.5 Style Recommender

	4 Demonstration
	4.1 Overall Workflow Demonstration
	4.2 Effectiveness of Template Retriever
	4.3 Effectiveness of Style Recommender

	5 Conclusion and Future Work
	Acknowledgments
	References

