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ABSTRACT
Recently a number of algorithms under the theme of ‘unbi-

ased learning-to-rank’ have been proposed, which can reduce po-

sition bias, the major type of bias in click data, and train a high-

performance ranker with click data in learning-to-rank. Most of

the existing algorithms, based on the inverse propensity weighting

(IPW) principle, first estimate the click bias at each position, and

then train an unbiased ranker with the estimated biases using a

learning-to-rank algorithm. However, there has not been a method

for unbiased pairwise learning-to-rank that can simultaneously

conduct debiasing of click data and training of a ranker using a

pairwise loss function. In this paper, we propose a novel framework

to accomplish the goal and apply this framework to the state-of-

the-art pairwise learning-to-rank algorithm, LambdaMART. Our

algorithm named Unbiased LambdaMART can jointly estimate the

biases at click positions and the biases at unclick positions, and

learn an unbiased ranker. Experiments on benchmark data show

that Unbiased LambdaMART can significantly outperform existing

algorithms by large margins. In addition, an online A/B Testing at a

commercial search engine shows that Unbiased LambdaMART can

effectively conduct debiasing of click data and enhance relevance

ranking.
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1 INTRODUCTION
Learning-to-rank, which refers to machine learning techniques

on automatically constructing a model (ranker) from data for rank-

ing in search, has been widely used in current search systems.

Existing algorithms can be categorized into pointwise, pairwise,

and listwise approaches according to the loss functions they uti-

lize [18, 19, 21]. Among the proposed algorithms, LambdaMART is

a state-of-the-art algorithm [4, 26]. The data for training in learning-

to-rank is usually labeled by human assessors so far, and the la-

belling process is often strenuous and costly. This raises the ques-

tion of whether it is possible to train a ranker by using click data

collected from the same search system. Click data is indicative of in-

dividual users’ relevance judgments and is relatively easy to collect

with low cost. On the other hand, it is also noisy and biased [14, 27].

Notably, the orders of documents in the search results affect users’

judgments. Users tend to more frequently click documents pre-

sented at higher positions, which is called position bias. This has

been preventing practical use of click data in learning-to-rank.

Recently a new research direction, referred to as unbiased learning-

to-rank, is arising and making progress. Unbiased learning-to-rank

aims at eliminating bias in click data, particularly position bias, and

making use of the debiased data to train a ranker. Wang et al. [24]

and Joachims et al. [15] respectively propose employing the inverse

propensity weighting (IPW) principle [23] to learn an ‘unbiased

ranker’ from click data. It is proved that the objective function in

learning using IPW is an unbiased estimate of the risk function

defined on a relevance measure (a pointwise loss). The authors also

develop methods for estimating position bias by randomization of

search results online. Wang et al. [25] further develop a method for

estimating position bias from click data offline. More recently Ai

et al. [1] propose a method that can jointly estimate position bias

and train a ranker from click data, again on the basis of IPW. In the

previous work, the IPW principle is limited to the pointwise setting

in the sense that position biases are only defined on click positions.

In this paper, we address the problem of jointly estimating po-

sition biases and training a ranker from click data for pairwise

learning-to-rank, particularly using a pairwise algorithm, Lamb-

daMART. To do so, we extend the inverse propensity weighting

principle to the pairwise setting, and develop a new method for

jointly conducting position bias estimation and ranker training.

Specifically, we give a formulation of unbiased learning-to-rank

for the pairwise setting and extend the IPW principle. We define

position biases as the ratio of the click probability to the relevance

probability at each position, as well as the ratio of the unclick prob-

ability to the irrelevance probability. This definition takes both the

position biases at click positions and those at unclick positions into

consideration. We prove that under the extended IPW principle, the

objective function becomes an unbiased estimate of risk function

https://doi.org/10.1145/3308558.3313447
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defined on pairwise loss functions. In this way, we can learn an

unbiased ranker using a pairwise ranking algorithm.

We then develop a method for jointly estimating position biases

for both click and unclick positions and training a ranker for pair-

wise learning-to-rank, called Pairwise Debiasing. The position bias

and the ranker can be iteratively learned through minimization of

the same objective function. As an instance, we further develop

Unbiased LambdaMART
∗
, an algorithm of learning an unbiased

ranker using LambdaMART.

Experiments on the Yahoo learning-to-rank challenge bench-

mark dataset demonstrate that Unbiased LambdaMART can effec-

tively conduct debiasing of click data and significantly outperform

the baseline algorithms in terms of all measures, for example, 3-

4% improvements in terms of NDCG@1. An online A/B Testing

at a commercial news search engine, Jinri Toutiao, also demon-

strates that Unbiased LambdaMART can enhance the performance

of relevance ranking at the search engine.

The contribution of this paper includes the following proposals.

• A general framework on unbiased learning-to-rank in the

pairwise setting, particularly, an extended IPW.

• Pairwise Debiasing, a method for jointly estimating position

bias and training a pairwise ranker.

• Unbiased LambdaMART, an algorithm of unbiased pairwise

learning-to-rank using LambdaMART.

2 RELATEDWORK
In this section, we introduce related work on learning-to-rank,

click model, and unbiased learning to rank.

2.1 Learning-to-Rank
Learning-to-rank is to automatically construct a ranking model

from data, referred to as a ranker, for ranking in search. A ranker

is usually defined as a function of feature vector based on a query

document pair. In search, given a query, the retrieved documents are

ranked based on the scores of the documents given by the ranker.

The advantage of employing learning-to-rank is that one can build

a ranker without the need of manually creating it, which is usually

tedious and hard. Learning-to-rank is now becoming a standard

technique for search.

There are many algorithms proposed for learning-to-rank. The

algorithms can be categorized as pointwise approach, pairwise

approach, and listwise approach, based on the loss functions in

learning [18, 19, 21]. The pairwise and listwise algorithms usually

work better than the pointwise algorithms [19], because the key

issue of ranking in search is to determine the orders of documents

but not to judge the relevance of documents, which is exactly the

goal of the pairwise and listwise algorithms. For example, the pair-

wise algorithms of RankSVM [6, 13] and LambdaMART [4, 26] are

state-of-the-art algorithms for learning-to-rank.

Traditionally, data for learning a ranker is manually labeled

by humans, which can be costly. To deal with the problem, one

may consider using click data as labeled data to train a ranker.

Click data records the documents clicked by the users after they

submit queries, and it naturally represents users’ implicit relevance

judgments on the search results. The utilization of click data has

∗
Code is available at https://github.com/acbull/Unbiased_LambdaMart

both pros and cons. On one hand, it is easy to collect a large amount

of click data with low cost. On the other hand, click data is very

noisy and has position bias, presentation bias, etc. Position bias

means that users tend to more frequently click documents ranked

at higher positions [14, 27]. How to effectively cope with position

bias and leverage click data for learning-to-rank thus becomes an

important research issue.

2.2 Click Model
One direction of research on click data aims to design a click

model to simulate users’ click behavior, and then estimate the pa-

rameters of the click model from data. It then makes use of the

learned click model for different tasks, for example, use them as

features of a ranker.

Several probabilistic models have been developed. For example,

Richardson et al. [22] propose the Position Based Model (PBM),

which assumes that a click only depends on the position and rel-

evance of the document. Craswell et al. [9] develop the Cascade

Model (CM), which formalizes the user’s behavior in browsing of

search results as a sequence of actions. Dupret et al. [10] propose

the User Browsing Model (UBM), asserting that a click depends not

only on the position of a document, but also on the positions of

the previously clicked documents. Chapelle et al. [8] develop the

Dynamic Bayesian Network Model (DBN), based on the assump-

tion that the user’s behavior after a click does not depend on the

perceived relevance of the document but on the actual relevance of

the document. Borisov et al. [3] develop the Neural Click Model,

which utilizes neural networks and vector representations to pre-

dict user’s click behavior. Recently, Kveton et al. [17] propose a

multi-armed bandit learning algorithm of the Cascade Model to

identify the k most attractive items in the ranking list. Li et al. [20]

makes use of click models to evaluate the performance of ranking

model offline.

Click models can be employed to estimate position bias and

other biases, as well as query document relevance. They are not

designed only for the purpose of debiasing and thus could be sub-

optimal for the task. In our experiments, we use the click models

to generate synthetic click datasets for evaluating our proposed

unbiased learning-to-rank algorithm offline.

2.3 Unbiased Learning-to-Rank
Recently, a new direction in learning-to-rank, referred to as

unbiased learning-to-rank, is arising and making progress. The

goal of unbiased learning-to-rank is to develop new techniques to

conduct debiasing of click data and leverage the debiased click data

in training of a ranker[2].

Wang et al. [24] apply unbiased learning-to-rank to personal

search. They conduct randomization of search results to estimate

query-level position bias and adjust click data for training of a

ranker in personal search on the basis of inverse propensity weight-

ing (IPW) [23]. Joachims et al. [15] theoretically prove that with

the inverse propensity weighting (IPW) principle, one can obtain

an unbiased estimate of a risk function on relevance in learning-to-

rank. They also utilize online randomization to estimate position

bias and perform training of a RankSVM model. Wang et al. [25]

employ a regression-based EM algorithm to infer position bias by

https://github.com/acbull/Unbiased_LambdaMart
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Table 1: A summary of notations.

q, Dq query q and documents Dq of q

i , di , xi , ri , ci i-th (representing the position by origi-

nal ranker where click data is collected)

document di in Dq with feature vector

xi , relevance information ri (1/0) and
click information ci (1/0)

Iq = {(di ,dj )} set of pairs of documents of q, in which

di is more relevant or more clicked

than dj
Cq , D = {(q,Dq ,Cq )} click information Cq of Dq and click

data set D for all queries

maximizing the likelihood of click data. The estimated position

bias is then utilized in learning of LambdaMART. Recently, Ai et

al. [1] design a dual learning algorithm which can jointly learn an

unbiased propensity model for representing position bias and an

unbiased ranker for relevance ranking, by optimizing two objective

functions. Both models are implemented as neural networks. Their

method is also based on IPW, while the loss function is a pointwise

loss function.

Our work mainly differs from the previous work in the following

points:

• In previous work, position bias (propensity) is defined as

the observation probability, and thus IPW is limited to the

pointwise setting in which the loss function is pointwise

and debiasing is performed at a click position each time.

In this work, we give a more general definition of position

bias (propensity), and extend IPW to the pairwise setting, in

which the loss function is pairwise and debiasing is carried

out at both click positions and unclick positions.

• In previous work, estimation of position bias either relies

on randomization of search results online, which can hurt

user experiences [15, 24], or resorts to separate learning

of a propensity model from click data offline, which can

be suboptimal to relevance ranking [1, 25]. In this paper,

we propose to jointly conduct estimation of position bias

and learning of a ranker through minimizing one objective

function. We further apply this framework to the state-of-

the-art LambdaMART algorithm.

3 FRAMEWORK
In this section, we give a general formulation of unbiased learning-

to-rank, for both the pointwise and pairwise settings. We also ex-

tend the inverse propensity weighting principle to the pairwise

setting.

3.1 Pointwise Unbiased Learning-to-Rank
In learning-to-rank, given a query document pair denoted as

x , the ranker f assigns a score to the document. The documents

with respect to the query are then ranked in descending order of

their scores. Traditionally, the ranker is learned with labeled data.

In the pointwise setting, the loss function in learning is defined on

a single data point x .

Let q denote the query and Dq the set of documents associated

with q. Let di denote the i-th document in Dq and xi the feature
vector of q and di (see Table 1). Let r

+
i and r−i represent that di is

relevant and irrelevant respectively (i.e., ri = 1 and ri = 0). For

simplicity we only consider binary relevance here and one can

easily extend it to the multi-level relevance case. The risk function

in learning is defined as

Rr el (f ) =

∫
L(f (xi ), r

+
i ) dP(xi , r

+
i ) (1)

where f denotes a ranker, L(f (xi ), r
+
i ) denotes a pointwise loss

function based on an IR measure [15] and P(xi , r
+
i ) denotes the

probability distribution on xi and r+i . Most ranking measures in

IR only utilize relevant documents in their definitions, and thus

the loss function here is defined on relevant documents with label

r+i . Furthermore, the position information of documents is omitted

from the loss function for notation simplicity.

Suppose that there is a labeled dataset in which the relevance

of documents with respect to queries is given. One can learn a

ranker
ˆfr el through the minimization of the empirical risk function

(objective function) as follows.

ˆfr el = argmin

f

∑
q

∑
di ∈Dq

L(f (xi ), r
+
i ) (2)

One can also consider using click data as relevance feedbacks

from users, more specifically, viewing clicked documents as relevant

documents and unclicked documents as irrelevant documents, and

training a ranker with a click dataset. This is what we call ‘biased

learning-to-rank’, because click data has position bias, presentation

bias, etc. Suppose that there is a click dataset in which the clicks

of documents with respect to queries by an original ranker are

recorded. For convenience, let us assume that document di in Dq
is exactly the document ranked at position i by the original ranker.

Let c+i and c−i represent that document di is clicked and unclicked

in the click dataset respectively (i.e., ci = 1 and ci = 0). The risk

function and minimization of empirical risk function can be defined

as follows.

Rcl ick (f ) =

∫
L(f (xi ), c

+
i ) dP(xi , c

+
i ) (3)

ˆfcl ick = argmin

f

∑
q

∑
di ∈Dq

L(f (xi ), c
+
i ) (4)

The loss function is defined on clicked documents with label c+i .

The ranker
ˆfcl ick learned in this way is biased, however.

Unbiased learning-to-rank aims to eliminate the biases, for ex-

ample position bias, in the click data and train a ranker with the

debiased data. The training of ranker and debiasing of click data

can be performed simultaneously or separately. The key question is

how to fill the gap between click and relevance, that is, P(c+i |xi ) and
P(r+i |xi ). Here we assume that the click probability is proportional

to the relevance probability at each position, where the ratio t+i > 0

is referred to as bias at a click position i .

P(c+i |xi ) = t+i P(r
+
i |xi ) (5)

There are k ratios corresponding to k positions. The ratios can

be affected by different types of bias, but in this paper, we only

consider position bias.
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We can conduct learning of an unbiased ranker
ˆfunbiased , through

minimization of the empirical risk function as follows.

Runbiased (f ) =

∫
L(f (xi ), c

+
i )

t+i
dP(xi , c

+
i ) (6)

=

∫
L(f (xi ), c

+
i )

P (c+i |xi )
P (r+i |xi )

dP(xi , c
+
i ) (7)

=

∫
L(f (xi ), c

+
i ) dP(xi , r

+
i ) (8)

=

∫
L(f (xi ), r

+
i ) dP(xi , r

+
i ) = Rr el (f ) (9)

ˆfunbiased = argmin

f

∑
q

∑
di ∈Dq

L(f (xi ), c
+
i )

t+i
(10)

In (9) click label c+i in the loss function is replaced with relevance

label r+i , because after debiasing click implies relevance.

One justification of this method is that Runbiased is in fact an

unbiased estimate of Rr el . This is the so-called inverse propensity

weighting (IPW) principle proposed in previous work. That is to

say, if we can properly estimate position bias (ratio) t+i , then we

can reliably train an unbiased ranker
ˆfunbiased .

An intuitive explanation of position bias (ratio) t+i can be found

in the following relation, under the assumption that a clicked docu-

ment must be relevant (c+ ⇒ r+).

t+i =
P(c+i |xi )

P(r+i |xi )
=

P(c+i , r
+
i |xi )

P(r+i |xi )
= P(c+i |r

+
i ,xi ) (11)

It means that t+i represents the conditional probability of how likely

a relevant document is clicked at position i after examination of

the document. In the original IPW, t+i is defined as the observation

probability that the user examines the document at position i be-
fore clicking the document [15, 25], which is based on the same

assumption as (11).

3.2 Pairwise Unbiased Learning-to-Rank
In the pairwise setting, the ranker f is still defined on a query

document pair x , and the loss function is defined on two data points

xi and x j . Traditionally, the ranker is learned with labeled data.

Let q denote a query. Let di and dj denote the i-th and j-th doc-

uments with respect to query q. Let xi and x j denote the feature
vectors from di and dj as well as q. Let r

+
i and r−j represent that

document di and document dj are relevant and irrelevant respec-

tively. Let Iq denote the set of document pairs (di ,dj ) where di
is relevant and dj is irrelevant. For simplicity we only consider

binary relevance here and one can easily extend it to the multi-level

relevance case. The risk function and the minimization of empirical

risk function are defined as

Rr el (f ) =

∫
L(f (xi ), r

+
i , f (x j ), r

−
j ) dP(xi , r

+
i ,x j , r

−
j ) (12)

ˆfr el = argmin

f

∑
q

∑
(di ,dj )∈Iq

L(f (xi ), r
+
i , f (x j ), r

−
j ) (13)

where L(f (xi ), r
+
i , f (x j ), r

−
j ) denotes a pairwise loss function.

One can consider using click data to directly train a ranker, that

is, to conduct ‘biased learning-to-rank’. Let c+i and c−j represent

that document di and document dj are clicked and unclicked re-

spectively. Let Iq denote the set of document pairs (di ,dj ) where di
is clicked and dj is unclicked. The risk function and minimization

of empirical risk function can be defined as follows.

Rcl ick (f ) =

∫
L(f (xi ), c

+
i , f (x j ), c

−
j ) dP(xi , c

+
i ,x j , c

−
j ) (14)

ˆfcl ick = argmin

f

∑
q

∑
(di ,dj )∈Iq

L(f (xi ), c
+
i , f (x j ), c

−
j ) (15)

The ranker
ˆfcl ick is however biased.

Similar to the pointwise setting, we consider dealing with posi-

tion bias in the pairwise setting and assume that the click probability

is proportional to the relevance probability at each position and the

unclick probability is proportional to the irrelevance probability

at each position. The ratios t+i > 0 and t−j > 0 are referred to as

position biases at a click position i and an unclick position j.

P(c+i |xi ) = t+i P(r
+
i |xi ) (16)

P(c−j |x j ) = t−j P(r
−
i |x j ) (17)

There are 2k position biases (ratios) corresponding to k positions.

We can conduct learning of an unbiased ranker
ˆfunbiased , through

minimization of the empirical risk function as follows.

Runbiased (f ) =

∫ L(f (xi ), c
+
i , f (x j ), c

−
j )

t+i · t−j
dP(xi , c

+
i ,x j , c

−
j ) (18)

=

∫ ∫ L(f (xi ), c
+
i , f (x j ), c

−
j )dP(c

+
i ,xi )dP(c

−
j ,x j )

P (c+i |xi )P (c
−
j |x j )

P (r+i |xi )P (r
−
i |x j )

(19)

=

∫ ∫
L(f (xi ), c

+
i , f (x j ), c

−
j )dP(r

+
i ,xi )dP(r

−
i ,x j )

(20)

=

∫
L(f (xi ), r

+
i , f (x j ), r

−
j )dP(xi , r

+
i ,x j , r

−
j ) (21)

=Rr el (f ) (22)

ˆfunbiased = argmin

f

∑
q

∑
(di ,dj )∈Iq

L(f (xi ), c
+
i , f (x j ), c

−
j )

t+i · t−j
(23)

In (18) it is assumed that relevance and click at position i are
independent from those at position j. (Experimental results show

that the proposed Unbiased LambdaMART works very well under

this assumption, even one may think that it is strong.) In (21),

click labels c+i and c−j are replaced with relevance labels r+i and r−j
because after debiasing click implies relevance and unclick implies

irrelevance.

One justification of this method is that Runbiased is an unbiased

estimate of Rr el . Therefore, if we can accurately estimate the posi-

tion biases (ratios), then we can reliably train an unbiased ranker

ˆfunbiased . This is an extension of the inverse propensity weighting

(IPW) principle to the pairwise setting.

Position bias (ratio) t+i has the same explanation as that in the

pointwise setting. An explanation of position bias (ratio) t−j is that

it represents the reciprocal of the conditional probability of how

likely an unclicked document is irrelevant at position j, as shown
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below.

t−j =
P(c−j |x j )

P(r−i |x j )
=

P(c−j |x j )

P(r−j , c
−
j |x j )

=
1

P(r−j |c
−
j ,x j )

(24)

It is under the assumption that an irrelevant document must be

unclicked (r− ⇒ c−), which is equivalent to (c+ ⇒ r+). Note that t−j
is not a probability and it has a different interpretation from t+i . The
unclicked document j can be either examined or unexamined. Thus,

in the extended IPW the condition on examination of document in

the original IPW is dropped.

4 APPROACH
In this section, we present Pairwise Debiasing as a method of

jointly estimating position bias and training a ranker for unbi-

ased pairwise learning-to-rank. Furthermore, we apply Pairwise

Debiasing on LambdaMart and describe the learning algorithm of

Unbiased LambdaMART.

4.1 Learning Strategy
We first give a general strategy for pairwise unbiased learning-

to-rank, named Pairwise Debiasing.

A key issue of unbiased learning-to-rank is to accurately esti-

mate position bias. Previous work either relies on randomization

of search results online, which can hurt user experiences [15, 24],

or resorts to a separate learning of position bias from click data

offline, which can be suboptimal to the ranker [1, 25]. In this paper,

we propose to simultaneously conduct estimation of position bias

and learning of a ranker offline through minimizing the following

regularized loss function (objective function).

min

f ,t+,t−
L(f , t+, t−) (25)

= min

f ,t+,t−

∑
q

∑
(di ,dj )∈Iq

L(f (xi ), c+i , f (x j ), c
−
j )

t+i · t−j
+ | |t+ | |pp + | |t− | |pp

(26)

s .t . t+
1
= 1, t−

1
= 1 (27)

where f denotes a ranker, t+ and t− denote position biases (ratios)

at all positions, L denotes a pairwise loss function, | | · | |
p
p denotes

Lp regularization. Because the position biases are relative values

with respect to positions, to simplify the optimization process we

fix the position biases of the first position to 1 and only learn the

(relative) position biases of the rest of the positions. Here p ∈

[0,+∞) is a hyper-parameter. The higher the value of p is, the more

regularization we impose on the position biases.

In the objective function, the position biases t+ and t− are in-

versely proportional to the pairwise loss functionL(f (xi ), c
+
i , f (x j ), c

−
j ),

and thus the estimated position biases will be high if the losses on

those pairs of positions are high in the minimization. The position

biases are regularized and constrained to avoid a trivial solution of

infinity.

It would be difficult to directly optimize the objective function in

(26). We adopt a greedy approach to perform the task. Specifically,

for the three optimization variables f , t+, t−, we iteratively optimize

the objective functionL with respect to one of themwith the others

fixed; we repeat the process until convergence.

4.2 Estimation of position bias ratios
Given a fixed ranker, we can estimate the position biases at all

positions. There are in fact closed form solutions for the estimation.

The partial derivative of objective function L with respect to

position bias t+ is

∂L(f ∗, t+, (t−)∗)
∂t+i

=
∑
q

∑
j :(di ,dj )∈Iq

L(f ∗(xi ), c+i , f
∗(x j ), c−j )

−(t+i )
2 · (t−j )

∗
+ p · (t+i )

p−1

(28)

Thus, we have
∗

argmin

t+i
L(f ∗, t+, (t−)∗) =


∑
q

∑
j :(di ,dj )∈Iq

L(f ∗(xi ), c
+
i , f

∗(x j ), c
−
j )

p · (t−j )
∗


1

p+1

(29)

t+i =

[ ∑
q
∑
j :(di ,dj )∈Iq (L(f

∗(xi ), c
+
i , f

∗(x j ), c
−
j ) / (t

−
j )

∗)∑
q
∑
k :(d1,dk )∈Iq (L(f

∗(x1), c
+
1
, f ∗(xk ), c

−
k ) / (t

−
k )

∗)

] 1

p+1

(30)

In (30) the result is normalized to make the position bias at the first

position to be 1.

Similarly, we have

t−j =

[ ∑
q
∑
i :(di ,dj )∈Iq (L(f

∗(xi ), c
+
i , f

∗(x j ), c
−
j ) / (t

+
i )

∗)∑
q
∑
k :(dk ,d1)∈Iq (L(f

∗(xk ), c
+
k , f

∗(x1), c
−
1
) / (t+k )

∗)

] 1

p+1

(31)

In this way, we can estimate the position biases (ratios) t+ and t− in

one step given a fixed ranker f ∗. Note that themethod here, referred

to as Pairwise Debiasing, can be applied to any pairwise loss func-

tion. In this paper, we choose to apply the pairwise learning-to-rank

algorithm LambdaMART.

4.3 Learning of Ranker
Given fixed position biases, we can learn an unbiased ranker.

The partial derivative of L with respect to f can be written in the

following general form.

∂L(f , (t+)∗, (t−)∗)
∂f

=
∑
q

∑
(di ,dj )∈Iq

1

(t+i )
∗ · (t−j )

∗

∂L(f (xi ), c+i , f (x j ), c
−
j )

∂f

(32)

We employ LambdaMART to train a ranker. LambdaMART [5,

26] employs gradient boosting or MART [11] and the gradient

function of the loss function called lambda function. Given training

data, it performs minimization of the objective function using the

lambda function.

In LambdaMART, the lambda gradient λi of document di is

calculated using all pairs of the other documents with respect to

the query.

λi =
∑

j :(di ,dj )∈Iq

λi j −
∑

j :(dj ,di )∈Iq

λji (33)

∗
The derivation is based on the fact p ∈ (0, +∞). The result is then extended to the

case of p = 0.
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λi j =
−σ

1 + eσ (f (xi )−f (x j ))

��∆Zi j �� (34)

where λi j is the lambda gradient defined on a pair of documents

di and dj , σ is a constant with a default value of 2, f (xi ) and f (x j )
are the scores of the two documents given by LambdaMART, ∆Zi j
denotes the difference between NDCG[12] scores if documents di
and dj are swapped in the ranking list.

Following the discussion above, we can make an adjustment on

the lambda gradient
˜λi with the estimated position biases:

˜λi =
∑

j :(di ,dj )∈Iq

˜λi j −
∑

j :(dj ,di )∈Iq

˜λji (35)

˜λi j =
λi j

(t+i )
∗ · (t−j )

∗
(36)

Thus, by simply replacing the lambda gradient λi in Lamb-

daMART with the adjusted lambda gradient
˜λi , we can reliably

learn an unbiased ranker with the LambdaMART algorithm. We

call the algorithm Unbiased LambdaMART.

Estimation of position biases in (30) and (31) needs calculation

of the loss function Li j = L(f (xi ), c
+
i , f (x j ), c

−
j ). For LambdaMART

the loss function can be derived from (34) as follows.

Li j = log(1 + e−σ (f (xi )−f (x j )))
��∆Zi j �� (37)

4.4 Learning Algorithm
The learning algorithm of Unbiased LambdaMART is given in

Algorithm 1. The input is a click dataset D. The hyper-parameters

are regularization parameter p and total number of boosting itera-

tionsM . The output is an unbiased ranker f and estimated position

biases at all positions t+, t−. As is outlined in Algorithm 1, Unbi-

ased LambdaMART iteratively calculates adjusted lambda gradient

in line 4, re-trains a ranker with the gradients in line 6, and re-

estimates position biases in line 7. The time complexity of Unbiased

LambdaMART is the same as that of LambdaMART.

Algorithm 1 Unbiased LambdaMART

Require: click dataset D = {(q,Dq ,Cq )}; hyper-parameters p,M ;

Ensure: unbiased ranker f ; position biases (ratios) t+ and t−;
1: Initialize all position biases (ratios) as 1;

2: form = 1 toM do
3: for each query q and each document di in Dq do
4: Calculate

˜λi with (t+)∗ and (t−)∗ using (35) and (36);

5: end for
6: Re-train ranker f with

˜λ using LambdaMART algorithm

7: Re-estimate position biases (ratios) t+ and t− with ranker

f ∗ using (30) and (31)

8: end for
9: return f , t+, and t−;

5 EXPERIMENTS
In this section, we present the results of two experiments on

our proposed algorithm Unbiased LambdaMART. One is an of-

fline experiment on a benchmark dataset, together with empirical

analysis on the effectiveness, generalizability, and robustness of

the algorithm. The other experiment is an online A/B testing at a

commercial search engine.

5.1 Experiment on Benchmark Data
We made use of the Yahoo! learning-to-rank challenge dataset

†

to conduct an experiment. The Yahoo dataset is one of the largest

benckmark dataset for learning-to-rank. It consists of 29921 queries

and 710k documents. Each query document pair is represented by

a 700-dimensional feature vector manually assigned with a label

denoting relevance at 5 levels [7].

There is no click data associated with the Yahoo dataset. We

followed the procedure in [1] to generate synthetically click data

from the Yahoo dataset for offline evaluation.
‡

We chose NDCG at position 1,3,5,10 and MAP as evaluation

measures in relevance ranking.

5.1.1 Click Data Generation. The click data generation process

in [1] is as follows. First, one trains a Ranking SVM model using

1% of the training data with relevance labels, and uses the model

to create an initial ranking list for each query. Next, one samples

clicks from the ranking lists by simulating the browsing process of

users. The position-based click model (PBM) is utilized. It assumes

that a user decides to click a document according to probability

P(c+i ) = P(o+i )P(r
+
i ). Here P(o+i ) and P(r+i ) are the observation

probability and relevance probability respectively.

The probability of observation P(o+i ) is calculated by

P(o+i |xi ) = ρθi

where ρi represents position bias at position i and θ ∈ [0,+∞] is

a parameter controlling the degree of position bias. The position

bias ρi is obtained from an eye-tracking experiment in [14] and the

parameter θ is set as 1 by default.

The probability of relevance P(r+i ) is calculated by

P(r+i ) = ϵ + (1 − ϵ)
2
y − 1

2
ymax − 1

where y ∈ [0, 4] represents a relevance level and ymax is the high-

est level of 4. The parameter ϵ represents click noise due to that

irrelevant documents (y = 0) are incorrectly perceived as relevant

documents (y > 0) , which is set as 0.1 by default.

5.1.2 Baseline Methods. We made comprehensive comparisons

between our method and the baselines. The baselines were created

by combining the state-of-the-art debiasing methods and learning-

to-rank algorithms. There were six debiasing methods. To make fair

comparison, we used click model to generate 165660 query sessions

as training dataset, and utilized the same dataset for all debiasing

methods. All the hyper-parameters of the baseline models were the

same as those in the original papers.

Randomization: The method, proposed by Joachims et al. [15],

uses randomization to infer the observation probabilities as position

biases. We randomly shuffled the rank lists and then estimated the

position biases as in [1].

†
http://webscope.sandbox.yahoo.com

‡
We plan to release the synthetically generated click data as well as the source code

of Unbiased LambdaMART.

http://webscope.sandbox.yahoo.com
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Table 2: Comparison of different unbiased learning-to-rank methods.

Ranker Debiasing Method MAP NDCG@1 NDCG@3 NDCG@5 NDCG@10

LambdaMART

Labeled Data (Upper Bound) 0.854 0.745 0.745 0.757 0.790

Pairwise Debiasing 0.836 0.717 0.716 0.728 0.764
Regression-EM [25] 0.830 0.685 0.684 0.700 0.743

Randomization 0.827 0.669 0.678 0.690 0.728

Click Data (Lower Bound) 0.820 0.658 0.669 0.672 0.716

DNN

Labeled Data (Upper Bound) 0.831 0.677 0.685 0.705 0.737

Dual Learning Algorithm [1] 0.828 0.674 0.683 0.697 0.734

Regression-EM 0.829 0.676 0.684 0.699 0.736

Randomization 0.825 0.673 0.679 0.693 0.732

Click Data (Lower Bound) 0.819 0.637 0.651 0.667 0.711

RankSVM

Labeled Data (Upper Bound) 0.815 0.631 0.649 0.675 0.707

Regression-EM 0.815 0.629 0.648 0.674 0.705

Randomization [15] 0.814 0.628 0.644 0.672 0.707

Click Data (Lower Bound) 0.811 0.614 0.629 0.658 0.697

Regression-EM: The method, proposed by Wang et al. [25],

directly estimates the position biases using a regression-EM model

implemented by GBDT.

Dual Learning Algorithm: The method, proposed by Ai et

al. [1], jointly learns a ranker and conducts debiasing of click data.

The algorithm implements both the ranking model and the debias-

ing model as deep neural networks.

Pairwise Debiasing: Our proposed debiasing method, which

is combined with LambdaMART. In this experiment, we set the

hyper-parameter p as 0 by default. As explained below, a further

experiment was conducted with different values of p.
Click Data: In this method, the raw click data without debiasing

is used to train a ranker, whose performance is considered as a lower

bound.

LabeledData: In this method, human annotated relevance labels

without any bias are used as data for training of ranker, whose

performance is considered as an upper bound.

There were three learning-to-rank algorithms.

DNN: A deep neural network was implemented as a ranker, as

in [1]. We directly used the code provided by Ai et al.
§
.

RankSVM: We directly used the Unbiased RankSVM Software

provided by Joachims et al.
¶
, with hyper-parameter C being 200.

LambdaMART: We implemented Unbiased LambdaMART by

modifying the LambdaMART tool in LightGBM [16]. We utilized

the default hyper-parameters of the tool. The total number of trees

was 300, learning rate was 0.05, number of leaves for one tree was

31, feature fraction was 0.9, and bagging fraction was 0.9.

In summary, there were 13 baselines to compare with our pro-

posed Unbiased LambdaMART algorithm. Note that Dual Learning

Algorithm and DNN are tightly coupled. We did not combine Pair-

wise Debiasing with RankSVM and DNN, as it is beyond the scope

of this paper.

§
https://github.com/QingyaoAi/Dual-Learning-Algorithm-for-Unbiased-Learning-to-Rank

¶
https://www.cs.cornell.edu/people/tj/svm_light/svm_proprank.html

5.1.3 Experimental Results. Table 2 summarizes the results. We can

see that our method of Unbiased LambdaMART (LambdaMART +

Pairwise Debiasing) significantly outperforms all the other baseline

methods. The results of Regression-EM and Dual Learning Algo-

rithm are compariable with those reported in the original papers.

In particular, we have the following findings.

• Our method of LambdaMART+Pairwise Debiasing (Unbi-

ased LambdaMART) achieves better performances than all

the state-of-the-art methods in terms of all measures. For

example, in terms of NDCG@1, our method outperforms

LambdaMART+Regression-EMby 3.2%, outperformsDNN+Dual

Learning by 4.3%, and outperforms RankSVM+Randomization

by 8.9%.

• Pairwise Debiasing works better than the other debiasing

methods. When combined with LambdaMART, Pairwise De-

biasing outperforms Regression-EM by 3.2%, outperforms

Randomization by 4.8% in terms of NDCG@1.

• LambdaMART trained with human labeled data achieves the

best performance (upper bound). An unbiased learning-to-

rank algorithm can still not beat it. This indicates that there

is still room for improvement in unbiased learning-to-rank.

• When trained with Click Data, the performance of Lamb-

daMART decreases significantly and gets closer to those

of RankSVM and DNN. This implies that a sophisticated

algorithm like LambdaMART is more sensitive to position

bias.

5.2 Empirical Analysis
We conducted additional experiments to investigate the effective-

ness, generalizability, and robustness of Unbiased LambdaMART.

5.2.1 Effectiveness of Unbiased LambdaMART. We investigated

whether the performance improvement by Unbiased LambdaMART

is indeed from reduction of position bias.

https://github.com/QingyaoAi/Dual-Learning-Algorithm-for-Unbiased-Learning-to-Rank
https://www.cs.cornell.edu/people/tj/svm_light/svm_proprank.html
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Figure 1: Average positions after re-ranking of documents at
each original position by different debiasing methods with
LamdbaMART.

Figure 2: Position biases (ratios) at click and unclick posi-
tions estimated by Unbiased LambdaMART.

We first identified the documents at each position given by the

original ranker. We then calculated the average positions of the

documents at each original position after re-ranking by Pairwise

Debiasing and the other debiasing methods, combined with Lamb-

daMART.We also calculated the average positions of the documents

after re-ranking by their relevance labels, which is the ground truth.

Ideally, the average positions by the debiasing methods should

get close to the average positions by the relevance labels. Figure 1

shows the results.

One can see that the curve of LambdaMART + Click Data (in

grey) is away from that of relevance labels or ground truth (in

brown), indicating that directly using click data without debiasing

can be problematic. The curve of Pairwise Debiasing (in orange)

is the closest to the curve of relevance labels, indicating that the

performance enhancement by Pairwise Debiasing is indeed from

effective debiasing.

Figure 2 shows the normalized (relative) position biases for click

and unclick positions given by Unbiased LambdaMART. The result

indicates that both the position biases at click positions and position

biases at unclick positions monotonically decrease, while the former

decrease at a faster rate than the latter. The result exhibits how

Unbiased LambdaMART can reduce position biases in the pairwise

setting.

5.2.2 Generalizability of Unbiased LambdaMART. The Position

Based Model (PBM) assumes that the bias of a document only de-

pends on its position, which is an approximation of user click behav-

ior in practice. The Cascade Model [10], on the other hand, assumes

that the user browses the search results in a sequential order from

top to bottom, which may more precisely model user behavior. We

therefore analyzed the generalizability of Unbiased LambdaMART

by using simulated click data from both Position Based Model and

Cascade Model, and studied whether regularization of position bias,

i.e., hyper-parameter p, affects performance.

We used a variant of Cascade Model which is similar to Dynamic

Bayesian Model in [8]. There is a probability ϕ that the user is

satisfied with the result after clicking the document. If the user

is satisfied, he / she will stop searching; and otherwise, there is a

probability β that he / she will examine the next result and there is

a probability 1 − β that he / she will stop searching. Obviously, the

smaller β indicates that the user will have a smaller probability to

continue reading, which means a more severe position bias. In our

experiment, we set ϕ as half of the relevance probability and used

the default value of β i.e., 0.5.

We compared Unbiased LambdaMART (LambdaMART + Pair-

wise Debiasing) with LambdaMART + two different debiasing meth-

ods, Regression-EM and Randomization, and also Click Data with-

out debiasing on the two datasets. Again, we found that Unbiased

LambdaMART significantly outperforms the baselines, indicating

that Pairwise Debiasing is indeed an effective method.

Figure 3 shows the results of the methods in terms of NDCG@1

and MAP, where we choose NDCG@1 as representative of NDCG

scores. For Unbiased LambdaMART, it shows the results under

different hyper-parameter values. We can see that Unbiased Lamb-

daMART is superior to all the three baselines on both datasets

generated by Position Based Model and Cascade Model. We can

also see that in general to achieve high performance the value of p
in Lp regularization should not be so high. For the dataset generated

by Cascade Model, the performance with L1 regularization is better

than that with L0 regularization. It indicates that when the data

violates its assumption, Unbiased LambdaMART can still learn a

reliable model with a higher order of regularization.

5.2.3 Robustness of Unbiased LambdaMART. We further evaluated

the robustness of Unbiased LambdaMART under different degrees

of position bias.

In the above experiments, we only tested the performance of

Unbiased LambdaMART with click data generated from a single

click model, i.e., θ as 1 for Position Based Model and β as 0.5 for

Cascade Model. Therefore, here we set the two hyper-parameters

to different values and examined whether Unbiased LambdaMART

can still work equally well.

Figure 4 shows the results in terms of NDCG@1 with different

degrees of position bias. The results in terms of other measures

have similar trends. When θ in Position Based Model equals 0, and

β in Cascade Model equals 1, there is no position bias. The results

of all debiasing methods are similar to that of using click data only.

As we add more position bias, i.e., θ increases and β decreases, the
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(a) Performance on click data generated by Cascade Model (b) Performance on click data generated by Position Based Model

Figure 3: Performances of LambdaMART versus regularization norms by different debiasing methods, when click data is
generated by two different click models.

Figure 4: Performances of Pairwise Debiasing against other debiasing methods with different degrees of position bias.

performances of all the debiasing methods decrease dramatically.

However, under all settings Unbiased LambdaMART can get less

affected by position bias and consistently maintain the best results.

This indicates that Unbiased LambdaMART is robust to different

degrees of position bias.

Next, we investigate the robustness of Unbiased LambdaMart

under different sizes of training data. We randomly selected a subset

of training data, (i.e., 20% - 100%) to generate different sizes of

click datasets, and used the datasets to evaluate the performances

of LambdaMART with different debiasing methods. To make fair

comparison, we used the same subsets of training data for running

of the Randomization and Regression-EM algorithm.

As shown in Figure 5, when the size of training data decreases,

the improvements obtained by the debiasing methods also decrease.
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Figure 5: Performances of Pairwise Debiasing against other
debiasing methods with different sizes of training data.

The reason seems to be that the position bias estimated from insuffi-

cient training data is not accurate, which can hurt the performances

of the debiasing methods. In contrast, Unbiased LambdaMART,

which adopts a joint training mechanism, can still achieve the best

performances in such cases. When the data size increases from

80% to 100%, the performance enhancement of LambdaMART +

Click Data is quite small, while the performance enhancements

of the debiasing methods are much larger. This result is in accor-

dance with the observation reported in[15], that simply increasing

the amount of biased training data cannot help build a reliable

ranking model, but after debiasing it is possible to learn a better

ranker with more training data. The experiment shows that Unbi-

ased LambdaMART can still work well even with limited training

data, and it can consistently increase its performances as training

data increases.

5.3 A/B Testing at Commercial Search Engine
We further evaluated the performance of Unbiased LambdaMART

by deploying it at the search engine of Jinri Toutiao, a commercial

news recommendation app in China with over 100 million daily

active users. We trained two rankers with Unbiased LambdaMART

and LambdaMART + Click Data using click data of approximately

19.6 million query sessions collected over two days at the search

engine. Then we deployed the two rankers at the search system

to conduct A/B testing. The A/B testing was carried out for 16

days. In each experiment group, the ranker was randomly assigned

approximately 1.5 million queries per day.

In the online environment, we observed that different users have

quite different click behaviors. It appeared to be necessary to have a

tighter control on debiasing. We therefore set the hyper-parameter

p as 1, i.e., we conducted L1 regularization to impose a stronger

regularization on the position biases. We validated the correctness

of this hyper-parameter selection on a small set of relevance dataset.

We compared the results of the two rankers in terms of first click

ratios, which are the percentages of sessions having first clicks at

top 1,3,5 positions among all sessions. A ranker with higher first

click ratios should have better performance.

Table 3: Relative increases of first click ratios by Unbiased
LambdaMART in online A/B testing.

Measure Click@1 Click@3 Click@5

Increase 2.64% 1.21% 0.80%

P-value 0.001 0.004 0.023

Table 4: Human assessors’ evaluation on results of same
queries ranked at top five positions by the two rankers.

Unbiased LambdaMART

vs. LambdaMart + Click

Win Same Loss

21 68 11

As shown in Table 3, Unbiased LambdaMART can significantly

outperform LambdaMART + Click Data in terms of first click ratios

at the A/B Testing. It increases the first click ratios at positions 1,3,5

by 2.64%, 1.21% and 0.80%, respectively, which are all statistically sig-

nificant (p-values < 0.05). It indicates that Unbiased LambdaMART

can make significantly better relevance ranking with its debiasing

capability.

We next asked human assessors to evaluate the results of the two

rankers. We collected all the different results of the same queries

given by the two rankers during the A/B testing period, presented

the results to the assessors randomly side-by-side, and asked asses-

sors to judge which results are better. They categorized the results

at the top five positions of 100 randomly chosen queries into three

categories, i.e., ‘Win’, ‘Same’ and ‘Loss’.

As shown in Table 4, the win/loss ratio of Unbiased LambdaMart

over LambdaMart + Click Data is as high as 1.91, indicating that

Unbiased LambdaMART is indeed effective as an unbiased learning-

to-rank algorithm.

6 CONCLUSION
In this paper, we have proposed a general framework for pair-

wise unbiased learning-to-rank, including the extended inverse

propensity weighting (IPW) principle. We have also proposed a

method called Pairwise Debiasing to jointly estimate position biases

and train a ranker by directly optimizing a same objective function

within the framework. We develop a new algorithm called Unbiased

LambdaMART as application of the method. Experimental results

show that Unbiased LambdaMART achieves significantly better

results than the existing methods on a benchmark dataset, and is

effective in relevance ranking at a real-world search system.

There are several items to work on in the future. We plan to apply

Pairwise Debiasing to other pairwise learning-to-rank algorithms.

We also consider developing a more general debiasing method that

can deal with not only position bias but also other types of bias

such as presentation bias. More theoretical analysis on unbiased

pairwise learning-to-rank is also necessary.
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