
1

Through the Castle Tunnels: an Empirical Study
of Inter-App Navigation Behaviors of Android

Users
Ziniu Hu, Yun Ma, Xuanzhe Liu,Jian Tang, Qiaozhu Mei

Abstract—
Mobile applications (a.k.a., apps), which facilitate a large variety of tasks on mobile devices, have become indispensable in our
everyday lives. Accomplishing a task may require the user to navigate among various apps. Unlike Web pages that are inherently
interconnected through hyperlinks, mobile apps are usually isolated building blocks, and the lack of direct links between apps has
largely compromised the efficiency of task completion. In this paper, we present the first in-depth empirical study of inter-app navigation
behaviors of smartphone users based on a comprehensive dataset collected through a sizable user study over three months. We
propose a model to distinguish informational pages and transitional pages, based on which a large number of inter-app navigation are
identified. We reveal that developing “tunnels” between “isolated” apps has a huge potential to reduce the cost of navigation. Our
analysis provides various practical implications on how to improve app-navigation experiences from both the operating system’s
perspective and the developer’s perspective.

Index Terms—Mobile apps; navigation experiences; inter-app navigation

F

1 INTRODUCTION

Alice was wandering through restaurant reviews in the
Yelp app. It mentioned that the restaurant reminded people
of a classical scene in the movie “Pretty Woman,” which
made her very eager to watch the clip. All she had to do
was to go back to the OS home screen and then launch
the Youtube app. When the landing page of the app was
loaded, she looked for the search bar, typed in a query, and
navigated through a few results before finding the clip of
the scene. And the moment was gone.

Mobile applications (a.k.a., apps) are already indispens-
able in our everyday lives. It is reported that the traffic from
mobile devices has already surpassed that from PCs and
apps have become the major entrance to the Internet [6].
Mobile users usually need to “navigate” among a set of
apps to complete a specific task [15]. For example, one may
receive a piece of news in the email app, read it in the
newsreader app, and share it to the social networking app.
Such a process is quite similar to browsing through Web
pages. However, compared to the Web users who can easily
navigate through the hyperlinks, app users like Alice often
have to go through a frustrating procedure to manually
switch from one app to another. This frustration is amplified
when there are more and more apps installed on a device
and when the user needs to switch back and forth between
various apps.

The inter-app navigation is indeed non-trivial for user
interaction and has been drawing a lot of attention. Some
solutions have been proposed to help bridge the “isolated”
apps [30], [40], [10]. In particular, the recent concept of
“deep links” has been proposed to facilitate the navigation
from one app to another. Essentially, deep links are the
URLs that point to specific locations inside an app page,

which launches the app if it has been already installed on
the device. Today, all major mobile platforms, including
Android, iOS, and Windows, have supported deep links,
and have been encouraging developers to implement and
define the deep links to their apps [2], [3], [4], [7]. So far,
the deep link has been reported to have a poor coverage [9]
- only approximately 25% of apps provide deep links and
only a small number of pages within an app, as predefined
by the developers, can be directly accessed via deep links.

Deep link is a desirable concept, but what is holding it
back? While there are historical reasons such as the fear of
“stolen page views”, the most straightforward reason is that
it takes non-trivial manual effort to do so. Indeed, unlike
hyperlinks which are standardized and facilitated by the
HTTP, there is no gold standard for deep links. The app
developers, the platforms, and the app stores all have to
spend substantial effort to define, implement, standardize,
and maintain them. Without teleportation spell, tunneling
through the castles means tedious human work.

Is it that bad? Perhaps not really. In practice, navigation
between apps is actually performed between the “pages”
inside the apps. Analogical to a website, an app also con-
tains various pages, e.g., the landing page, advertisement
pages, content pages, etc. Not all apps need to be deeply
linked, and for those that do, not every single page needs
to be linked from outside the apps. If one can distinguish
those “important” pages from the rest and understand their
relationship in navigation, the effort can be significantly
reduced. Developers may focus their effort on creating deep
links for these pages; they may also target the “partner”
apps/pages. Furthermore, if the next page that a user is
likely to visit can be predicted and a method that can
dynamically generate deep links is available [9], runtime
facilities such as Avitate [10] and FALCON [40] can be



2

leveraged to navigate users to the destination page more
efficiently. At the minimum, even if either of the wishes
comes true, a simple estimation of the potential benefit
of deep links could make the “deep link advocacy” more
persuasive. Answers to these questions exactly requires
an in-depth analysis of the inter-app navigation behavior,
which unfortunately does not exist in literature.

This paper makes the first empirical study of the page-
level inter-app navigation behavior of Android users. We
present an in-depth analysis of inter-app navigation based
on a three-month behavioral data set collected from 64 users
in 389 Android apps, consisting of about 0.89 million records
of app-page level navigation. Inspired by the Web search
and browsing, we classify the informational pages where
users tend to stay and interact with an app for long periods
of time, and the transitional pages where users only stay
awhile or tend to skip when they navigate among infor-
mational pages. We summarize various patterns of inter-
app navigation which can imply some routines of users.
We believe that our empirical study results can provide
useful insights to various stakeholders in the app-centric
ecosystem.

The main contributions of this paper are:

• We propose a classification model to distinguish
pages in an app into informational pages and tran-
sitional pages. We study the distribution of users’
staying time of these two kinds of pages. The staying
time in transitional pages looks like a Gaussian distri-
bution with a mean of 4.3 seconds and a small value
of variance, while the staying time of informational
pages follows a log-normal distribution with the mean
staying time of 29.4 seconds and a large variance,
indicating that the time spent on this type of pages
can differ dramatically.

• We then demonstrate the inefficiency caused by
transitional pages in inter-app navigation. The av-
erage time cost of inter-app navigation is around 13
seconds when navigating among different apps, in
which the transitional pages account for 28.2%. Such
an overhead of inter-app navigation is non-trivial for
mobile users.

• We explore two frequent patterns in inter-app nav-
igations by analyzing which apps/pages are more
likely to be linked during inter-app navigation, and
under what contexts such navigation would happen.
The task-specific pattern indicates that apps can be
classified into clusters under which the apps coop-
erate with each other to accomplish specific tasks.
The contextual pattern indicates that the inter-app
navigation is related to context information such as
network type, time, location, etc.

• We propose some practical implications based on
the findings, to facilitate app developers, OS ven-
dors, and end-users. For example, we make a proof-
of-concept demonstration by employing a machine
learning based approach to accurately predicting the
next informational page from current state and thus
recommend a navigation path between two pages
(i.e., a potential deep link) to reduce unnecessary
transitional pages.

To the best of our knowledge, this is the first empirical
study on inter-app navigation behavior at a fine-grained
level, i.e., page level rather than app level. The rest of
this paper is organized as follows. Section 2 presents the
background of Android apps and formulate the inter-app
navigation at the page level. Section 3 presents our behav-
ioral data set and how it was collected. Section 4 describes
an empirical study of inter-app navigation at page level and
characterizes the navigation patterns. Section 5 discusses
some practical and potential useful implications that can be
explored based on our empirical study. Section 6 discusses
the limitations of our work. Section 7 relates our work to
existing literature and Section 8 concludes the paper.

2 INTER-APP NAVIGATION: IN A NUTSHELL

An Android app [1], identified by its package name,
usually consists of multiple activities that are related to
each other. An activity is a component that provides an
interface for users to interact with, such as dialing phones,
watching videos, reading news, or viewing maps. Each ac-
tivity has a unique class name and is assigned a window
to draw its graphical user interface.

For ease of understanding, we can draw an analogy
between Android apps and the Web, as compared in Table 1.
An Android app can be regarded as a website where the
package name of the app is similar to the domain of the
website. An activity can be regarded as a template of Web
pages and an instance of an activity is like a Web page
instance. Different Web pages of the same template differ
in the values of parameters in their URLs. For example,
URLs of different video pages on the Youtube website have
the format of https://www.youtube.com/watch?v=[xxx].
This template can be regarded as the VideoActivity in the
Youtube app. Without loss of generality, in this paper, we
use the term page or app page to represent the activity that
has a UI for users to interact with on their smartphones.

In order to accomplish a task, users usually have to
navigate through many pages. Among them, different pages
serve different roles. Inspired by studies on the Web [13], we
classify the pages of mobile apps into two categories:

• informational page: These pages serve to provide
content/information, such as news article pages,
video pages, mail editing page or chatting page, etc.
Users accomplish their desired intention of one app
in its informational pages.

• transitional page: These pages are the intermedi-
ate pages along the way to reach the informational
pages. Some of the pages serve to narrow the search
space of possible informational pages and direct
the users to them, including the system transitional
pages, such as Launcher, where users can select the
desired app that may contain the potential informa-
tional pages, and in-app transitional pages, such as
ListPage in a news app, where users can choose a
topic to filter the recommended articles. Other pages
are somehow less helpful for navigation from the
users’ perspective, such as the advertisement pages
and the transition splash pages.

Based on our definition, app navigation is the process
of reaching the target informational page from the source



3

Fig. 1. An example showing a user’s navigation process from a ramen restaurant page in Yelp to read comments in Reddit.

TABLE 1
Conceptual comparison between Android apps and Web

Concepts of Android Apps Concepts of Web Example
app website youtube

package name domain www.youtube.com
activity Web page template https://www.youtube.com/watch?v=[xxx]

activity instance Web page instance https://www.youtube.com/watch?v=qv6UVOQ0F44

informational page, via multiple transitioanl pages. Specif-
ically, inter-app navigation is the navigation whose source
and target informational pages belong to different apps.

To illustrate the navigation process, a simple scenario
is drawn in Fig 1 . Suppose a user has found a ramen
restaurant in the Yelp, and wants to read detailed comments
about this restaurant in Reddit. To accomplish this task, the
user has to first quit Yelp app to the OS launcher, click the
app menu and then opens the Reddit app. Afterwards, the
user has to start from the home page of Reddit app, walking
through a series of transitional pages such as Search page
and List page, and finally reaches the post page to read
the comment about this restaurant. In this scenario, the true
intention of the user is to be directly navigated to the target
informational page, i.e., the post page, to read the comment.

However, the user needs various transitional pages before
landing on the final target page.

Intuitively, users would like to spend more time on
informational pages and avoid transitional pages. In view of
that, some popular apps adopt flat UI design and carefully
organize its functionalities and information display in order
to reduce the number of transitional pages for reaching
the target informational page. However, due to the fact
that most of the apps provide only dedicated functionali-
ties, users usually need to switch among multiple apps to
achieve one task, resulting in notable time cost on inter-app
navigations.

We formally define a page-level app navigation as a
triple < s, t, ψ >, where s is the source informational
page, t is the target informational page, and ψ = {pi} is a



4

Fig. 2. The architecture of the data collection tool

sequence of transitional pages that represent a navigation
path from s to t. We ensure that the screen state of the
smartphone is always On in a whole navigation process.
ψ can be empty, indicating that there is a direct link from s
to t without having to pass through any transitional pages.
By the definition, the inter-app navigation is a special type
of app navigation where s and t belong to different apps.

3 DATA COLLECTION

To study the inter-app navigation on Android smart-
phones, we conduct a field study by collecting behavioral
data from real-world users. In this section, we present the
design of our data collection tool and the description of the
data set.

As mentioned above, we focus on the page-level inter-
app navigation. To this end, we develop a tool to monitor
the system events representing such behaviors, as shown
in Fig 2. The tool is a monitoring app running at the back-
ground of Android platforms. It consists of four modules,
Activity Monitor, Context Extractor, Daemon, and Uploader.
The activity monitor reads the top of the activity stack
from the system every one second and produces a record
entry whenever the top activity changes, indicating that a
transition between app pages occurs. In the meantime, the
monitor invokes the context extractor to collect the user’s
context information, including network type (cellular/Wi-
Fi/Off), local time and screen status (ON/OFF). The records
are stored in a local database, and the uploader will upload
the records to our server once a day at night and under Wi-
Fi network condition. Therefore, the tool does not influence
the normal usage of mobile devices. To keep our tool from
being killed by the system, the daemon module periodically
checks the status of the tool and re-launches it if necessary.
To protect user privacy, we anonymize the device ID with a
hash string.

We recruited student volunteers for the data collection
via an internal social network site in Peking University. We
got 64 on-campus student volunteers who fully agreed with
the collection statements, and we installed the tool on their
Android smartphones. The data collection lasted for three

months, and we finally collected 894,542 records, containing
3,527 activities from 389 apps1.

Table 2 provides some illustrating examples: User ID
denotes the unique and anonymized identifier of the user;
App and Activity denote which app and page (i.e., activ-
ity) that the user is interacting with, respectively. Time refer
to the local Beijing time when the page is visited. Network
indicates the network type when the page is visited, i.e.,
cellular, Wi-Fi, or offline; Screen denotes the status of the
device screen, i.e., ON and OFF.

4 EMPIRICAL ANALYSIS

According to the definition of inter-app navigation,
the most important issue is to identify the informational
pages from transitional pages. In this section, we present
an empirical study on our collected user behavioral data,
based on which we can identify the informational pages
and transitional pages through a clustering approach. We
then explore the characteristics and find some interesting
patterns of inter-app navigations.

4.1 Clustering the App Pages
According to the definition in Section 2, to identify the

inter-app navigation, we should distinguish informational
pages from transitional pages in our collected records of
page usage. Just like the similar experiences on the Web
pages [26], a simple but intuitive measure is based on the
length of staying time spent on the pages. Intuitively, users
are likely to spend longer time on the informational pages,
while the transitional pages are only for navigation purpose
and thus users are likely to spend rather short time on them.
Since our data records the sequence of pages, we are able
to calculate the time interval for every single page by the
timestamp when this page is visited and the timestamp
when its subsequent page is visited. As each page could
appear several times, we can obtain the distribution of the
staying time for each page.

Table 3 lists example pages with the longest and shortest
average staying time. From the name of these pages, we can
speculate that the pages with longer staying time are more
likely to be the pages that provide substantial information
and available services, while the pages with shorter staying
time have names containing “list” or “launcher”, indicating
that these pages are more likely to be transitional pages.
These examples imply that the staying time can be a vital
clue to identify transitional pages.

Inspired by the work by Van et al. [37], which propose a
classification approach to determine the seesion time thresh-
old of user interaction, we propose to use an unsupervised
clustering approach to separate the pages according to the
users’ staying time on the pages. A simple approach may
be employing the average staying time by all users as the
threshold. However, simply using the average staying time
cannot reflect the overall staying time distribution of mobile
users. Thus, we represent each page with the probability
distribution of all visits’ staying time.

1. The data collection and analysis process was conducted with IRB
approval from the Research Ethic Committee of Institute of Software,
Peking University. We plan to release the collected data once the work
is published.



5

TABLE 2
Data example

User ID App Activity Time Network Screen
99000478917655 com.eg.android.AlipayGphone fund.ui.FundMainNewActivity Mar. 31, 15:25:0 cellular ON
353925062095766 com.tencent.mm ui.LauncherUI May 2, 22:17:13 Wi-Fi ON
863473022828516 com.android.contacts activities.ContactDetailActivity May 9, 14:49:26 Off OFF
357523051693018 com.sina.weibo page.NewCardListActivity Feb. 11, 15:20:50 cellular ON

TABLE 3
Top five pages with shortest and longest average staying time

Category Page Name App Name Page Description Average st

Shortest Staying Time

lenovo.Launcher Lenovo System System Home Screen 1.08s
kugou.LockScreenActivity Kugou Music Music LockScreen 1.28s
dazhihui.InitScreen dazhihui Investment App Home Page 1.67s
miui.home.Launcher Miui System System Home Screen 1.72s
hupu.ListNewActivity Hupu Sports News List Overview 1.85s

Longest Staying Time

mobileqq.TextPreviewActivity QQ Chatting Interface 73.6s
android.AlarmAlertFullScreen System System Clock 72.1s
papd.HealthDailyPopActivity Pingan Doctor Healthy Daily News 66.3s
renren.ChatContentActivity Renren Chatting Interface 64.4s
meitu.mtxx.MainActivity Meitu Xiu Xiu Photo Beautification 62.8s

To measure the distance between the staying time
distribution of pages, we may use the classic Kullback-
Leibleer divergence (KLD) [22] and its symmetric version,
the Jensen-Shannon divergence (JSD) [18]. In this paper,
we choose the JSD distance as the distance between the
distribution of every pair of pages because its symmetric
property makes it more appropriate for clustering. Then,
we use the spectral clustering method [29] to cluster the
pages. More specifically, such a process first learns a low-
dimensional representation of each page according to the
distance matrix between the pages, and then deploys the
K-means algorithm to cluster the pages based on the low-
dimensional representations. We assign different numbers
of clusters in the K-means algorithm and select the optimal
number of clusters through the Silhouette score [33]. Fig. 3
visualizes the clustering results with different numbers of
clusters using Fruchterman-Reingold force-directed algo-
rithm [21]. The best clustering results are obtained when
the number of clusters equals to 2, which well verifies our
intuition that the pages can be classified into two categories.

To further validate the distribution of staying time of
these two types of pages, for each page, we calculate the
median of its staying time and then depict the Probability
Density Function (PDF) of all the pages in Fig 4. The blue
curve indicates the PDF of staying time for informational
pages while the red curve indicates transitional pages. The
distribution of the transitional pages’s staying time looks
like a Gaussian distribution with a mean of 4.3 seconds and
a small value of variance. The distribution of informational
pages’ staying time follows a log-normal distribution with
the mean staying time of 29.4 seconds and a large variance,
indicating that the time spent on this type of pages can differ
dramatically.

To evaluate the authenticity of our cluster, we randomly
select 100 activities, and manually classify these activities by
their name, staying time and screenshots. It turns out that
this result is completely accorded with our cluster labels,
verifying the reliability of our result.

After identifying informational and transitional pages,

Fig. 3. Clusters of pages. Visualized using the Fruchterman-Reingold
force-directed algorithm. The optimal cluster number is 2.

we extract all the navigations from the records. Since we
focus on only the navigation within different apps, we
select all the inter-app navigation. The amount of inter-app
navigation records is 41,619, which accounts for 26.9% of
the total navigations. Our following analysis is conducted
on these inter-app navigation records.

4.2 Characterizing Inter-App Navigation
Ideally, users prefer to directly navigate between two

informational pages, without any transitional pages on the
navigation path. To explore whether the current inter-app
navigation performs in such user-desired fashion, we use
two metrics to quantitatively measure: 1) time cost, which is
the aggregated value of staying time for all the transitional
pages between the source informational page and target
informational page; 2) step cost, which is the number of
transitional pages on a navigation path.



6

Fig. 4. Probability density distribution of staying time of two types of
pages.

The distribution of time cost and step cost for all the
inter-app navigations are illustrated as the red curve and
labeled as total in Fig 5. The average time cost is 13.01s, and
the average step cost is 2.69, indicating that users have to
transit about 3 pages and spend 13 seconds when navigating
among different apps. Additionally, we find that the time
cost on the transitional pages takes up to 28.2% of the total
time in the entire inter-app navigation, which is the total
time cost of the source informational page, the subsequent
transitional pages and the target informational page during
a single navigation process. Therefore, the overhead of
inter-app navigation is non-trivial for mobile users.

We observe that most of the inter-app navigations do not
jump directly from the source app to the target app. Instead,
a large number of inter-app navigations involve pages from
the Android system such as android.Launcher, which is
the system home screen, or android.RecentsActivity,
which is the system list page showing all the recently used
apps. We call these navigations as indirect navigations.
However, a small number of inter-app navigations do not
contain these system pages, but consist of transitional pages
only from the source and target apps, e.g., when user clicks
a Share to FaceBook button in the Reddit, the FaceBook
app will be directly launched rather than having to pass
through system pages. We call this kind of navigation as
direct navigation between apps.

Comparing the distribution of time cost and step cost
between direct navigations and indirect navigations in Fig 5,
we have the following observations:

• The average time cost of direct and indirect naviga-
tions are 8.97 seconds and 24.43 seconds respectively;
the average step cost of direct and indirect navigation
are 0.97 and 3.86 respectively. This result indicates
that the overhead of direct navigations is much
smaller than that of indirect navigations.

• All the indirect navigations have at least one inter-
mediate step, i.e., the transitional page belongs to
the Android system. In contrast, 66% of direct nav-
igation have no such cost, indicating no navigation
overhead. Therefore, the direct navigation is more
appreciated.

We further explore how direct navigation could happen.
Some links navigate to the system-wide apps such as Call,
Maps, Camera, and so on, which are pre-installed in the
OS and have special APIs to invoke. Other links navigate
the users directly from the source page to the target page
of third-party apps without passing through system naviga-
tional pages, such as Launcher. There links are likely to be
implemented by the emerging popular deep link [7]. Similar
to hyperlinks of Web pages, deep links also employ URI
to locate pages and can be executed to directly open the
target page from the source page. For example, when a user
reads an interesting article and wants to share it to Facebook,
he/she can click a share button, invoking a deep link that
directly navigate him/her to the Facebook interface without
walking through multiple transitional pages.

We are interested in whether the direct navigation is
achieved by means of deep link. To this end, we first label
the category information of each app2, and filter out the
system-wide apps. The remaining third-party apps accounts
for 82.7% of the total apps. Next, we check the manifest
file of the third-party apps that contain the target pages to
ensure they provide deep link interfaces. Finally, we employ
a popular Android analysis tool IC3 [11] to check whether
the source page actually invokes the target page’s deep link
interfaces. Given two apps, IC3 can compute all the inter-
component communications (ICC) between these apps. If
there exists an ICC between the activities of the source page
and target page, then we can confirm that the source page
has an entry to invoke the target page’s deep link interfaces.
Results show that within the direct navigation pairs, all the
target pages provide deep link interfaces and all the source
pages have an entry to invoke the corresponding interfaces,
indicating that these direct navigations are highly likely to
be implemented by deep links.

4.3 Patterns of Inter-App Navigation
Next, we explore whether there exist any patterns of

inter-app navigations. By analyzing which apps/pages are
more likely to be linked during inter-app navigation, and
under which contexts such navigation would happen, we
find two kinds of navigation patterns: task-specific pattern
that the inter-app navigation is related to a specific type
of task, which is inferred by page property, and contextual
pattern that the inter-app navigation is related to context
information such as network type, time, location, etc, which
is the characteristic feature of mobile usage.

4.3.1 Task-Specific Navigation Pattern
We draw a graph representing all inter-app navigations

by removing those transitional pages. As is illustrated in
Fig 6, each node corresponds to an independent informa-
tional page, and is labeled with the category information of
the app that the page belongs to. We assign an edge between
two nodes from different apps if there exists a navigation
between them. We then measure the distance by the static
transition probability between every single informational
page, which is calculated by the frequency of a particular
navigation divided by the total navigation times. In this

2. In this paper, we simply use the categorization system from a lead-
ing Android market, called Wandoujia http://www.wandoujia.com.



7

(a) CDF curve of step cost. (b) CDF curve of time cost.

Fig. 5. Overhead of inter-app navigation

Fig. 6. Inter-app navigation graph connecting informational pages from
different apps. Each node is labeled by the category of the app. Edges
are not displayed to clealy show patterns.

way, we get the distance matrix of the graph and visual-
ize it with the classic Fruchterman-Reingold force-directed
algorithm [21], where each node size is determined by its
out-degree.

Interestingly, there are some significant clusters. In par-
ticular, there is a “core” cluster, in which most of the pages
belong to the SOCIAL, SYSTEM, and MEDIA apps. Other
clusters around the core include smaller nodes from differ-
ent categories. From the distance matrix, we find that those
small clusters around the core are mutually isolated with
each other, while the nodes in these clusters are strongly
cohesive. Additionally, all these small clusters have a strong
correlation with the core cluster. We also find that apps
consisting these small clusters belong to different categories.

For example, Fig 6 shows the pages of one cluster that is
zoomed in. We can see that these pages come from a photo
beautification app called MeiTuXiuXiu (mtxx for short), a
gallery app called PicFolder, a video app called iQiyi,
system camera and gallery, along with the directed links

among them. Such observations may reflect the following
scenario: a user captures a screenshot from a video page of
iQiyi or takes a photo using the camera, then he/she navi-
gates to the edit page in the mtxx and decorates this image.
Eventually he/she saves the image into the PicFolder.

Such observations indicate that the inter-app navigation
can be intuitively classified into some clusters. Each cluster
could represent a specific user-task scenario, where different
pages may cooperate with one another to accomplish this
task.

Indeed, the current results can only imply that such
patterns may consist of a task. In our future work, we plan to
combine session-level analysis to comprehensively specify
the task characteristics [19].

4.3.2 Contextual Navigation Pattern

Next, we are interested if any contextual patterns exist,
i.e., whether some navigations are more likely to occur
under specific contexts. From our collected data, we focus
on two types of contexts, i.e., network and time.

We first analyze whether the type of network affects
user’s preference of inter-app navigation. We classify all
navigations into three clusters based on their network type.
Similar to the task-specific pattern, for each cluster, we
calculate the static transition probability between each pair
of informational pages. Then we plot a heatmap for each
network-type cluster, where pages are denoted by their
categories. The source pages are plotted on the Y-axis while
target pages are plotted on the X-axis. The results are
presented in Fig 7. It is observed that only the SYSTEM is
significant when the users are offline, while all the other
categories are rather shallow. It indicates that users may
mainly switch between SYSTEM apps such as SMS, Dialing,
Camera, etc., when they are offline. When the network is
under Wi-Fi and cellular, the inter-app navigations are more
likely to happen, and SOCIAL apps are usually involved.
However, the frequent patterns can vary between these two
network types. When users are under Wi-Fi, MEDIA apps
are more likely to be linked with other apps. Since MEDIA
apps such as video players may require high-bandwidth
and stable connection, it makes sense that such a navigation



8

(a) Off Network (b) Wi-Fi (c) Cellular

Fig. 7. Heatmaps of transitonal probability between pages from different categories. The three figures refer to the transition under different network
types respectively.

Fig. 8. The boxplot of the usage time gap for seven categories.

pattern exists. In a sense, one can infer which pages/apps
that are more likely to be visited given the network type.

Then we investigate whether some navigations are time
sensitive. We compute the visit frequency of a page during
a specific period of time, with a metric namely Usage Time
Gap (UTG), which is defined as the interval between current
time when a page is visited and the time when this page
was latest visited. We draw the boxplot of the UTG for
each categories in Fig 8. The UTG varies among different
categories. For SOCIAL apps, the median value and variance
of UTG is the smallest, indicating that users may frequently
visit the pages of these apps in a short time interval. For
the Media and Living apps, their median UTG are much
larger than the others, indicating that these apps are not
“daily routines” for users. In other words, when used once,
these apps are not likely to be revisited by users in a short
time interval. Intuitively, with the metric such as UTG,
one can infer which pages are more likely to be visited.
Combined with the sequential information between two
informational pages, it would be possible to prefetch these
pages according to the patterns captured with UTG.

5 IMPLICATIONS

The preceding results have illustrated that the inter-
app navigation has some patterns. Thus, the most intuitive

implication is whether the navigation could be predicted, so
that the transitional pages can be reduced or even be elim-
inated. Based on the prediction, our study would be useful
for stakeholders including end-users, app developers, and
OS vendors.

5.1 Predicting Page Navigation
We first investigate whether the inter-app navigation

could be predicted, i.e., given a source informational page
s, which target informational page t a user is likely to s
navigate to? In fact, we can predict such behaviors based on
our previously derived patterns. To make a proof-of-concept
demonstration, we use a machine learning technique to con-
duct the prediction. Intuitively, such a prediction problem
can be treated as a classification problem. We can treat a pair
of app page navigation (s, t) as an instance. Each pair of
navigation (s, t) can be represented with different types of
features such as the features for source informational page
s and target informational page t, as well as the contextual
features when the navigation occurs.

With the actual inter-app navigation behaviors in our
collected data, we can observe many positive instances of
inter-app navigation pairs. However, given a source infor-
mational page s, it is unknown which target information
pages t will never be navigated to. Theoretically, this is
known as a typical one-class classification problem [36] in
literature. Here we adopt a state-of-the-art algorithm PU
proposed by Liu et al. [25] [24] to solve the problem. The
basic idea of the algorithm is to use the positive data to
identify a set of informative negative samples from the
unlabelled data (Here, each possible pair of source and
target informational pages can be treated as an unlabeled
instance.) In our experiments, we compare different variants
of the algorithms, including S-EM, Spy+SVM, Spy+SVM-I,
NB+EM, NB+SVM, and NB+SVM-I, and a naive solution
which simply samples some random target pages for each
source page and treats them as the negative samples.

The overall classification process can be simply de-
scribed in Algorithm 5.1. In the beginning, the algorithm
generates an unlabelled data set U by randomly sampling
some target pages t for each source page s. Then the al-
gorithm identifies informative negative samples according
to the positive training data. For prediction, given a source
page s, we can rank the candidate target page t according



9

to the probability of the pair (s, t) belonging to the positive
class.

Input: PU Method PU , Positive dataset P , Candidate
Page Set S=(p1, p2, ..., pN )

Output: Recommendation List L
1 U ← geneate unlabelled data(P )
2 N ← extract negative(U,P ) according to [25]
3 PU .classifier.fit(P ∪N)
4 foreach tp ∈ S do
5 prob[tp] = PU .classifier.predict probability((s, t))
6 end
7 L← sort by probability(P, prob)
8 return L

ALGORITHM 5.1: One-class classification algorithm
for prediction.

In Table 4, we illustrate two types of features to repre-
sent each navigation pair (s, t), including the task-specific
features of the pages and the contextual features associated
with the pairs. For the task-specific features, three different
features are identified including the name of the pages, the
name of the apps which the pages belong to, and the name
of the category that the page belongs to. The contextual
features include the network type and UTG, representing
the elapsed time of the target app since it was used last
time until now. Note that all the features except UTG are
nominal variables, so we process them in one-hot encoding.

We report the prediction results with different com-
binations of these features to illustrate their importance.
As a ranking problem, we evaluate the prediction result
according to a well adopted measure for ranking, called
mean reciprocal rank (MRR) metric [5]. The MRR of a
recommendation list is the multiplicative inverse of the
rank for the correct answer. Obviously, the MRR score and
the recommendation performance is positively correlated.
Indeed, there are different variants of the PU algorithm.
Therefore, we first randomly filter 30% of the data reserved
for subsequent evaluation, and then conduct a five-fold
cross validation to compare different variants of the algo-
rithms. The results show that S-EM algorithm yields the
better results.

We compare the proposed approach with two other
straightforward algorithms including Most Frequently Used
approach and Markov chain based approach. Most Frequently
Used approach ranks the pages according to their usage
frequency, and Markov chain based approach is ranked by
the static transition probability for one page to be navigated
from the given source page. To evaluate our approach, we
use the 30% data as test set which is previously reserved for
evaluation and the remaining 70% data as training set.

Fig 9 presents the prediction results with different
algorithms and features. First, the classification algorithm
with all the features outperform the naive Most Frequently
Used and Markov Chain methods, with its MRR score of
0.328, implying that the actual page is on average ranked
at the third place of our recommendation list. This is be-
cause the classification algorithm can effectively integrate
the task-specific features of pages and contextual features
for prediction, which have been proved to be very im-
portant according to the exploratory analysis in previous
section. Second, as for the importance of different features

TABLE 4
Feature Table.

Feature Type Feature Name Dimensions

task-specific feature
Page name 816*2=1632
app name 245*2=490
category id 20*2=40

contextual feature Network type 3
Usage Time Gap (UTG) 1

Fig. 9. Prediction results with different algorithms and features.

for prediction, we tried different combinations of features
for prediction. We first treat the page name as the basic
feature. Adding the name of the app or the category of the
app only slightly improves the performance. This may be
because all the three features are about the task-specifics
of the pages, which are strongly correlated, and the name
of the pages already well represent the task-specifics of the
pages. Adding either of the contextual features significantly
improve the result, showing that the contexts are indeed
very important factors to affect the inter-app navigation. By
combing all the features, the best-of-breed prediction result
is obtained.

5.2 Further Potential Application Scenarios

The preceding proof-of-concept demonstration indicates
that the inter-app navigation could be predicted to some
extent, based on which we can further explore some po-
tential applications for different stakeholders, including app
developers, OS vendors, and end-users.

Based on the information of inter-app navigation, app
developers can more efficiently identify the upstream partner
apps from which users can navigate to the current app,
and downstream partner apps to which users can navigate
from the current app. On one hand, app developers could
expose “deep links” to upstream apps in order to attract
more user visits from upstream apps. On the other hand,
app developers could integrate deep links from downstream
apps in order to precisely introduce users for downstream
apps. Similar to the hyperlinks of Web pages, deep links can



10

introduce more “page visits” of an app. In particular, the in-
app ads are the major revenue channels for app developers,
hereby establishing the deep links can potentially increase
the possibility of ads clicking.

For current system-wide smart assistant such as Avi-
ate [10], our analysis of navigation patterns can provide
insights to further improve the user experiences. Aviate
predicts the next app that is likely to be used by users
and displays the shortcut of apps on system home screen.
However, the prediction is performed at app level, thus users
still have to manually locate the desired page by several
tedious steps. Combined with our analysis, the prediction
can be performed at a fine-grained level with less “transi-
tional” overhead but navigate users directly to the page that
they are really interested in. In addition, the predicted page
can be more accurate to contexts (e.g., the current network
condition), and can be prefetched into RAM to enable fast
launch.

Finally, the ultimate goal of our study is to build a
recommendation assistant that can predict which app pages
a user desires to access, and can dynamically generate deep
links for such desired pages. Thus, the user can pass through
a few transitional pages in the recommendation assistant,
rather than the time-consuming navigation steps. Since
previous research efforts such as uLink [9] have already
proposed practical approaches to dynamically generating
deep links for app pages, the key point of such a recommen-
dation assistant is to accurately predict which pages should
be navigated. Our prediction can provide which kind of
informational pages the user is likely to visit. Based on the
prediction, the assistant can recommend the possible pages
and generate a deep link for each page, enabling the user to
choose the desired page and navigate directly to that page.
For example, if we predict that a user is going to watch a
movie, the system can offer a top recommended movie list
for the user to select. Our findings can integrate the recent
efforts on in-app semantic analysis [15], by which the system
can more precisely predict which app page the user desires.

6 DISCUSSION

This paper does make the first-step empirical study to
derive preliminary knowledge of inter-app navigation. Our
results come from the field study conducted on 64 student
volunteers’ devices for three months, with 0.89 million
records of user behaviors. Indeed, such a scale is a bit small,
and the selected user group may not be comprehensive
enough, e.g., reflecting the preferences of only on-campus
students. In this way, the empirical results and derived
knowledge may not generalize to users from other groups.
However, our analysis approach and prediction techniques
can still be generalized. Indeed, predicting the inter-app
navigation behavior is quite meaningful in various aspects,
e.g., traffic accounting and in-app ads.

Our data collection tool introduces very little additional
overhead. Based on our previous industrial experiences of
large-scale user study collaborated with leading app store
operators [23] and input method apps [27], we plan to
evaluate and integrate our data collection tool in these plat-
forms, so that we can learn more comprehensive knowledge
of inter-app navigation. In addition, with the access to a

large number of user profile, we can add features of user
modeling to enrich the analysis of navigation patterns.

Another limitation of our empirical study is that our
data collection is focused at page (activity) level. However,
modern Android apps make use of fragment, which is a
portion of user interfaces (e.g., tabs) in an activity and can
be roughly regarded as dynamic sub-pages. Ideally, it is
more comprehensive to measure the session time the user
spends on each fragment and on each activity, respectively.
We plan to consider conducting this measurement study in
our future work.

This paper demonstrates the potential overhead caused
by those transitional pages. From the user’s perspective,
we argue that such overhead could compromise user ex-
periences and shall be avoided. However, from the devel-
oper’s perspective, some of the transitional pages are still
meaningful, e.g., containing some in-app ads to increase
developers’ revenues. Hence, it may not be reasonable or
realistic to remove all transitional pages. In practice, we
need to carefully justify whether a transitional page should
be contained or not on the navigation path, e.g., allowing
the developers to configure when releasing deep links, or
the end users to decide by their own preferences.

7 RELATED WORK

In this section, we discuss the related existing literature
studies and compare with our work.

7.1 Field Study of Smartphone Usage

There have been some field studies to investigate user
behaviors on smartphones. Ravindranath et al. [32] devel-
oped AppInsight to automatically identify and characterize
the critical paths in user transactions, and they conducted
a field trial with 30 users for over 4 months to study the
app performance. Rahmati et al. [34] designed LiveLab, a
methodology to measure real-world smartphone usage and
wireless networks with a reprogrammable in-device logger
designed for long-term user studies. They conducted a user
experiment on iPhone and analyzed how users use the
network on their smartphones. In their following work [31],
they conducted a study involving 34 iPhone 3GS users,
reporting how users with different economic background
use smartphones differently. Mathur et al. [28] carried out
experiments with 10 users to model user engagement on
mobile devices and tested their model with smartphone
usage logs from 130 users. Ferreira et al. [16] collected
smartphone application usage patterns from 21 participants
and participants context to study how they manage their
time interacting with the device. Our field study collected
user behavior data from 64 volunteers for 3 months, of
which the quantity is comparable with existed studies.

7.2 Mining Navigation Patterns

A lot of research efforts have been made on mining
the navigation patterns on the Web. Some existing litera-
tures leveraged graph models. Borges et al. [12] proposed
an N-gram model to exploit user navigation patterns and
they used entropy as an estimator of the user sessions’



11

statistical property. Anderson et al. [8] proposed a Rela-
tional Markov Model(RMM) to model the behavior of Web
users for personalizing websites. Liu et al. [26] proposed a
method of computing page importance by user browsing
graph rather than the traditional way of analyzing link
graph. Chierichetti et al. [14] studied the extent to which
the Markovian assumption is invalid for Web users. Other
literatures use sequential pattern mining to exploit associa-
tion rules. Fu et al. [17] designed a system which actively
monitors and tracks a user’s navigation, and applied A-
priori algorithm to discover hidden patterns. Wang et al. [38]
divided navigation sessions into frames based on a specific
time internal, and proposed a personalized recommenda-
tion method by integrating user clustering and association-
mining techniques. West et al. [39] studied how Web users
navigate among Wikipedia with hyperlinks. Our work is
inspired by these previous efforts on the Web and we focus
on how users navigate among apps on mobile system. Sim-
ilar to our work, Srinivasan et al. [35] developed a service
called MobileMiner that runs on the phone to collect user
usage information. They conducted a user experiment and
use a sequential mining algorithm to find user behavior
patterns. Jones et al. [20] present a revisitation analysis of
smartphone use to investigate whether smartphones induce
usage habits. They distinguish the pattern granularity into
macro and micro level, and find unique usage characteristics
on micro level. Both of them dig into app-level usage
patterns, but our work focuses on the much deeper page-
level navigation patterns rather than the app level.

7.3 Prediction of App Usage
Predicting the apps to be used not only facilitates mobile

users to target the following apps, but also can be leveraged
by mobile systems to improve the performance. Abhinav
et al. [30] proposed a method similar to a text compression
algorithm that regards the usage history as sequential pat-
terns and uses the preceding usage sequence to compute the
conditional probability distribution for the next app. Yan et
al. [40] proposed an algorithm for predicting next app to be
used based on user contexts such as location and temporal
access patterns. They built an app FALCON that can pop the
predicted app to home screen for fast launching. Richardo et
al. [10] proposed Parallel Tree Augmented Naive Bayesian
Network (PTAN) as the prediction model, and used a large
scale of data from Aviate log dataset to train their model,
and achieve high precision result.

Our work differs from previous efforts much in several
aspects. On one hand, the granularity of our research is
on the page level, which is deeper than the app level. As
a result, we cannot exploit the existing dataset that mainly
records the user behaviors at the app level. On the other
hand, we reveal that the inter-app navigation has many
transitional pages, which is a tremendous noise for the pur-
pose of predicting informational pages. Thus, we propose a
clustering approach to filter out the transitional pages, and
enable more precise prediction.

8 CONCLUSION

In this paper, we have presented a quantitative study
of the inter-app navigation behavior of Android users. The

analysis was based on behavioral data collected from a real
user study, which contains nearly a million records of page
transitions. We found that unnecessary transitional pages
visited between two inter-app informational pages take up
to 28.2% of the time in the entire inter-app navigation,
a cost that can be significantly reduced through building
direct links between the informational pages. An in-depth
analysis reveals clear clustering patterns of inter-app pages,
and a machine learning algorithm effectively predicts the
next informational page a user is navigating into. Our
results provide actionable insights to app developers and
OS vendors.

While we have made the preliminary results of demon-
strating the feasibility of predicting the next page using a
standard algorithm, it is not our intent to optimize the pre-
diction performance in this study. It is a meaningful future
direction to build advanced prediction models, especially
to consider the previous navigation sequences in the same
session and to personalize the prediction. It is also intriguing
to enlarge the scale of the user study to cover users with
diverse demographics.

REFERENCES

[1] Android guide. http://developer.android.com/guide/
components/index.html.

[2] Bing app linking. https://msdn.microsoft.com/en-us/library/
dn614167.

[3] Facebook app links. https://developers.facebook.com/docs/
applinks.

[4] Google app indexing. https://developers.google.com/
app-indexing/.

[5] Mean reciprocal rank. https://en.wikipedia.org/wiki/Mean
reciprocal rank.

[6] Mobile comparison. http://www.comscore.com/Insights/Blog/Mobile-
Internet-Usage-Skyrockets-in-Past-4-Years-to-Overtake-Desktop-
as-Most-Used-Digital-Platform.

[7] Mobile deep linking. https://en.wikipedia.org/wiki/Mobile
deep linking.

[8] C. R. Anderson, P. M. Domingos, and D. S. Weld. Relational
markov models and their application to adaptive web navigation.
In Proc. of SIGKDD 2002, pages 143–152, 2002.

[9] T. Azim, O. Riva, and S. Nath. uLink: Enabling user-defined deep
linking to app content. In Proc. of MobiSys 2016, pages 305–318,
2016.

[10] R. Baeza-Yates, D. Jiang, F. Silvestri, and B. Harrison. Predicting
the next app that you are going to use. In Proc. of WSDM 2015,
pages 285–294, 2015.

[11] R. Bhoraskar, S. Han, J. Jeon, T. Azim, S. Chen, J. Jung, S. Nath,
R. Wang, and D. Wetherall. Brahmastra: Driving apps to test the
security of third-party components. In Proc. of USENIX Security
2014, pages 1021–1036, 2014.

[12] J. Borges and M. Levene. Data mining of user navigation patterns.
In Proc. of WEBKDD 1999, pages 92–111, 1999.

[13] A. Broder. A taxonomy of web search. In ACM Sigir forum,
volume 36, pages 3–10. ACM, 2002.

[14] F. Chierichetti, R. Kumar, P. Raghavan, and T. Sarlós. Are web
users really markovian? In Proc. of WWW 2012, pages 609–618,
2012.

[15] E. Fernandes, O. Riva, and S. Nath. Appstract: on-the-fly app
content semantics with better privacy. In Proceedings of the 22nd
Annual International Conference on Mobile Computing and Network-
ing, MobiCom 2016, pages 361–374, 2016.

[16] D. Ferreira, J. Goncalves, V. Kostakos, L. Barkhuus, and A. K.
Dey. Contextual experience sampling of mobile application micro-
usage. In Proc. of MOBILEHCI 2014, pages 91–100, 2014.

[17] X. Fu, J. Budzik, and K. J. Hammond. Mining navigation history
for recommendation. In Proc. of IUI 2000, pages 106–112, 2000.

[18] B. Fuglede and F. Topsoe. Jensen-Shannon divergence and Hilbert
space embedding. In Proc. of ISIT 2004, 2004.

[19] A. Halfaker, O. Keyes, D. Kluver, J. Thebault-Spieker, T. T. Nguyen,
K. Shores, A. Uduwage, and M. Warncke-Wang. User session
identification based on strong regularities in inter-activity time.
In Proc. of WWW 2015, pages 410–418, 2015.

[20] S. L. Jones, D. Ferreira, S. Hosio, J. Goncalves, and V. Kostakos.
Revisitation analysis of smartphone app use. In Proc. of UbiComp
2015, pages 1197–1208, 2015.



12

[21] S. G. Kobourov. Spring embedders and force directed graph
drawing algorithms. Computer Science, 2012.

[22] S. Kullback. The kullback-leibler distance. American Statistician,
41(4):340–341, 1987.

[23] H. Li, W. Ai, X. Liu, J. Tang, F. Feng, G. Huang, and Q. Mei. Voting
with their feet: Inferring user preferences from app management
activities. In Proc. of WWW 2016, pages 1351–1361, 2016.

[24] X. Li and B. Liu. Learning to classify texts using positive and
unlabeled data. In Proc. of IJCAI 2003, pages 587–594, 2003.

[25] B. Liu, Y. Dai, X. Li, W. S. Lee, and P. S. Yu. Building text classifiers
using positive and unlabeled examples. In Proc. of ICDM 2003,
pages 179–188, 2003.

[26] Y. Liu, B. Gao, T. Liu, Y. Zhang, Z. Ma, S. He, and H. Li. Browser-
ank: letting web users vote for page importance. In Proc. of SIGIR
2008, pages 451–458, 2008.

[27] X. Lu, W. Ai, X. Liu, Q. Li, N. Wang, G. Huang, and Q. Mei.
Learning from the ubiquitous language: an empirical analysis of
emoji usage of smartphone users. In Proc. of UbiComp 2016, pages
770–780, 2016.

[28] A. Mathur, N. D. Lane, and F. Kawsar. Engagement-aware com-
puting: modelling user engagement from mobile contexts. In Proc.
of UbiComp 2016, pages 622–633, 2016.

[29] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering:
Analysis and an algorithm. Proc. of NIPS 2001, 14:849–856, 2001.

[30] A. Parate, M. Hmer, D. Chu, D. Ganesan, and B. M. Marlin.
Practical prediction and prefetch for faster access to applications
on mobile phones. In Proc. of UbiComp 2013, pages 275–284, 2013.

[31] A. Rahmati, C. Tossell, C. Shepard, P. Kortum, and L. Zhong. Ex-
ploring iphone usage: the influence of socioeconomic differences
on smartphone adoption, usage and usability. In Proc. of Mobile
HCI 2012, pages 11–20, 2012.

[32] L. Ravindranath, J. Padhye, S. Agarwal, R. Mahajan, I. Obermiller,
and S. Shayandeh. Appinsight: mobile app performance monitor-
ing in the wild. In Proc. of OSDI 2012, pages 107–120, 2012.

[33] P. J. Rousseeuw. Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis. Journal of Computational &
Applied Mathematics, 20(20):53–65, 1987.

[34] C. Shepard, A. Rahmati, C. Tossell, L. Zhong, and P. Kortum.
Livelab: Measuring wireless networks and smartphone users in
the field. ACM Sigmetrics Performance Evaluation Review, 38(3):15–
20, 2010.

[35] V. Srinivasan, S. Moghaddam, A. Mukherji, K. K. Rachuri, C. Xu,
and E. M. Tapia. MobileMiner: mining your frequent patterns on
your phone. In Proc. of UbiComp 2014, pages 389–400, 2014.

[36] D. M. J. Tax. One-class classification. Applied Sciences, 2001.
[37] N. Van Berkel, C. Luo, T. Anagnostopoulos, D. Ferreira,

J. Goncalves, S. Hosio, and V. Kostakos. A systematic assessment
of smartphone usage gaps. In Proc. of CHI 2016, pages 4711–4721,
2016.

[38] F. H. Wang and H. M. Shao. Effective personalized recommenda-
tion based on time-framed navigation clustering and association
mining. Expert Systems with Applications, 27(3):365–377, 2004.

[39] R. West and J. Leskovec. Human wayfinding in information
networks. In Proc. of WWW 2012, pages 619–628, 2012.

[40] T. Yan, D. Chu, D. Ganesan, A. Kansal, and J. Liu. Fast app
launching for mobile devices using predictive user context. In
Proc. of MobiSys 2012, pages 113–126, 2012.


